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SUMMARY

Cardiovascular Disease (CVD) continues to be the leading cause of death in western

countries according to the statistics update by the American Heart Association. Atheroscle-

rosis is estimated to be responsible for a large portion of CVD and affects 60 million people

in the United States. Accurate diagnosis is crucial for proper treatment planning. Currently,

the clinical standard screening technique for diagnosing atherosclerosis is x-ray angiography,

which reveals the residual lumen size. X-ray angiographic images possess good resolution

and contrast, however, lumen size is not always a proper criterion given the positive remod-

eling nature of atherosclerotic plaques. In the past decade, it has been shown that most

plaques responsible for a fatal or nonfatal myocardial infarction are less than 70% stenosed.

Clinical data support the idea that plaques producing non-flow-limiting stenoses account

for more cases of plaque rupture and thrombosis than plaques producing a more severe

stenosis. Due to this fact, plaque itself must be imaged in order to assess its vulnerability.

A wealth of literature suggests that multicontrast MRI has the potential of characterizing

plaque constituents, and thus is a promising technique for plaque imaging.

Because of the technical difficulties associated with in-vivo plaque imaging and the

fact that our research was aimed at developing new methodologies, our approaches was

to image excised coronary arteries under simulated in-vivo conditions in a tissue culture

chamber. It is shown by this research that automatic plaque characterization techniques

developed under ex-vivo conditions still apply for in-vivo studies. Based on this finding,

an automatic plaque characterization technique using multicontrast MRI was developed.

Furthermore, “shared k-space” reconstruction techniques were interrogated to assess their

feasibility in accelerating multicontrast MRI acquisition. Results show that these techniques

are promising in accelerating multicontrast MRI acquisitions.

Overall, the current thesis addresses: 1) the impact of plaque “freshness” on multi-

contrast MRI, 2) issues and solutions in automatic plaque characterization, 3) potential
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schemes that accelerate multicontrast MR acquisitions.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Atherosclerosis, a systematic inflammatory disease, is the major contributor to cardiovas-

cular disease [57, 62, 78], and affects 60 million people in the United States [1]. The iden-

tification of vulnerable atherosclerotic plaque and understanding of its formation appear

to be crucial for the management and treatment of the clinical sequelae of atherosclerosis.

Research [14, 34, 35] has shown that lumen size is not sufficient to predict the occurrence

of clinical events. From a pathological point of view, information on plaque morphology

and composition may be more valuable in the vulnerability assessment than lumen size.

Driven by such clinical requirements, many imaging modalities have been investigated in

atherosclerotic plaque characterization. These modalities include but are not limited to:

intravascular ultrasound (IVUS) [69], optical coherence tomography (OCT) [44], ultra-fast

electron beam coherence tomography (EBCT) [79] and magnetic resonance imaging (MRI)

[93]. Excellent soft tissue contrast, abundant imaging mechanisms and non-invasive nature

make MRI more promising than its peers [28] for this task. In Figure 1, images from the

three most investigated plaque imaging modalities (CT, Ultrasound and MRI) illustrate

MRI’s priorities.

MR studies of atherosclerosis require the use of combined MR sequences to achieve the

characterization goal [13, 27, 28, 30, 106, 109]. This new approach is known as multicontrast

MRI of atherosclerotic plaque imaging.

1.2 Motivation

Multicontrast MRI is still in its developing phase [23, 28, 80, 107], and there are several

problems yet to be solved. First of all, in-vivo study of coronary plaques using MRI is still

restricted by technical limitations. Specifically, most previous research in MR coronary vessel

wall imaging was performed under ex-vivo conditions. Secondly, there is still no effective
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Figure 1: Comparison of plaque imaging modalities. (A) microCT [51], (B) intravascular
ultrasound [82] and (C) high resolution T2 weighted MR images of atherosclerotic plaques.
It can be seen that MRI possesses much better soft tissue contrast than CT and ultrasound.

means to automatically characterize plaque constituents. Thirdly, the number and type

of MRI contrast mechanisms that should be used to inspect plaque’s vulnerability are still

unclear. In the original multicontrast MRI approach, three sequences are used (T1 weighted,

T2 weighted and proton density weighted). Many successful supplements to the original

technique have been added for better constituent differentiation. An example is Diffusion

Weighted Imaging (DWI) that gives a more homogenous appearance of thrombus than other

contrast mechanisms [95]. With more contrast mechanisms included in multicontrast MR

imaging, reducing acquisition time becomes more important than ever.

1.3 The Problem Statement

What can we do to address the issues mentioned above and bring MR plaque imaging closer

to clinical application? To answer the question, this thesis intends to develop a feasible and

robust automated plaque characterization scheme based on multicontrast MR data; evaluate

the feasibility of extending automated plaque characterization from ex-vivo to in-vivo scans;

and explore possible means to accelerate multicontrast MRI acquisition.

Specifically, the goals of this thesis include:

1. Acquire multicontrast MRI in coronary atherosclerotic plaques under simulated in-

vivo conditions.
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(a) Design an MR scanner - compatible tissue culture system to maintain the physio-

logical environment (and hence the MR properties of tissues) during acquisition.

(b) Evaluate and compare the multicontrast MRI results obtained from fresh and

preserved stages using a histological gold standard.

(c) Measure the quantitative MR properties of plaque constituents at 4.7T under

both fresh and preserved conditions.

2. Develop automatic characterization routines for plaque constituents using multicon-

trast MRI.

(a) Classify principal constituents in vulnerable atherosclerotic plaques using a Fuzzy

C-Means (FCM) based clustering algorithm.

(b) Design a statistically based technique for labeling plaque constituents using quan-

titative MR properties.

(c) Develop an automatic plaque characterization routine.

3. Adapt “shared k-space” reconstruction methods in accelerating multicontrast MRI

acquisitions.

(a) Adapt Keyhole and Reduced Imaging by Generalized-series Reconstruction (RIGR)

techniques developed for dynamic imaging to the application of multicontrast

MRI.

(b) Evaluate the performance of keyhole and RIGR reconstruction.

1.4 Approach

The title of this dissertation is “Multicontrast MRI of Atherosclerotic Plaques: Acquisition,

Characterization and Reconstruction”. The development of the thesis follows this sequence.

Firstly, essential physical and mathematical knowledge about the MR signal and image

contrast was introduced. Image acquisition considerations including contrast mechanism

selection, pulse sequence modification and vessel sample handling were then explained with

3



theoretical and empirical justifications. After all the theoretical analysis, multicontrast MR

data were acquired with proper imaging protocol.

Secondly, the acquired multicontrast MRI data were employed to develop an automatic

plaque characterization algorithm. Characterization, a pattern recognition task in image

processing, was divided into two separate steps: classification/segmentation and labeling.

The general approaches of classification were introduced briefly. For MR images, classifica-

tion is further complicated due to practical issues such as partial volume effect and system

imperfections. Therefore, modifications were introduced to the basic form of classification

routine to improve its performance under such situations. To overcome the difficulties as-

sociated with traditional labeling practice, a novel labeling schemes was proposed. A new

characterization algorithm, combining the proposed classification and labeling scheme, was

then developed for plaque characterization. The data acquired previously were used to

evaluate the performance of characterization.

Lastly, the dilemma of the contrast mechanism number and acquisition time was touched.

Possible solutions to this issue were outlined. In the current thesis, efforts were addressed

on the reconstruction side regarding the reduction of MR acquisition time. Specifically,

“shared k-space” techniques were proposed for this purpose. The theoretical background of

the techniques was detailed to justify their usage. The techniques were then evaluated on

multicontrast MR data acquired on both research and clinical scanners.

1.5 Thesis Organization

The organization of the pages to follow closely adheres to the progression described above.

Each chapter is essentially a stand-alone collection of related experiments targeted to achieve

specific aims mentioned above.

Chapter II offers background information of atherosclerosis from a clinical, biological and

technical standpoint. It covers key findings from biomedical science related investigations

and gives an overview of the available biomedical imaging techniques of plaque characteri-

zation. It finally focused on the discussion of MRI’s current role in plaque imaging, along

with specific technical difficulties.
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Chapter III touches the theoretical background of MRI’s contrast mechanisms. It leads

to a better understanding of multicontrast and quantitative MRI.

Chapter IV starts with the detailed description of MRI experiment setup and MRI

acquisition protocol. The multicontrast MRI results of “fresh” and “preserved” vessels are

then compared both qualitatively and quantitatively.

Chapter V aims at developing a fully automatic plaque characterization routine to

assist the evaluation of the plaque vulnerability. The chapter starts with the classifica-

tion/segmentation issue related to plaque characterization. Specific concerns of multicon-

trast MRI classification were introduced and solved while seeking a novel classification

technique. Then, efforts were made on developing a tissue labeling scheme to tag the classi-

fication results. Finally, a novel characterization technique combining the classification and

labeling was developed and evaluated on the MR data acquired in Chapter IV.

Chapter VI emphasizes the importance of reducing the MR acquisition time on the

clinical practice of multicontrast MR plaque imaging. The theoretical background and

implications of “shared k-space” reconstructions developed for dynamic imaging is first

introduced. The techniques were then applied to multicontrast MR plaque imaging aiming

at accelerating the MR acquisitions. Data reconstructed by the “shared k-space” techniques

were finally evaluated to assess the feasibility of reducing imaging time using this type of

reconstruction.

Chapter VII summarizes the major findings of the whole thesis, provides further research

directions and concludes the thesis.

1.6 Scope of Document

It is presumed the reader has basic background with human physiology and MRI. Funda-

mental concepts including proton spin dynamics, electromagnetism, quantum mechanics -

Schrödinger wavefunction, and MR image formation (Fourier theory) is used without de-

tailed explanation. Some general MRI principles, especially those related to image contrast,

are covered as they were discussed in each section. For more dedicated descriptions about
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MRI physics, the reader is directed to reference books by Haacke et al. [39] and Vlaardinger-

broek et al. [101]. The image formation theory and techniques for MRI are covered more

thoroughly in the book by Liang and Lauterbur [55].
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CHAPTER II

CLINICAL BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

Healthy vessels of the human arterial tree, with few exceptions, are composed of three

layers: the inner-most intima layer, the middle media layer and the outer-most adventitia

layer. Atherosclerosis is a chronic, progressive disease characterized by the deposition of

lipid and buildup of fibrous/necrotic tissues in the intimal layer of medium and large vessels

[57, 62, 78]. It is a systemic inflammatory response to “injuries” resulting from lipoproteins

and/or other risk factors. It is estimated that 50% of CVD, which is the leading cause

of death and claims some 2600 deaths per day in the United States [1], is atherosclerosis

related [62]. Despite the slow pace of its development, atherosclerosis often results in acute

clinical manifestations, including ischemia, stroke and myocardial infarction.

According to traditional notion, bulky plaques may reduce blood flow, causing clinical

symptoms. However, clinical data from serial angiographic studies demonstrate discontinu-

ous increments for most atherosclerotic lesions [57]. This finding leads to the current concept

that an acute occlusion results from formation of thrombus, accounting for more clinical

complications than flow-limiting lesions [25, 62]. Indeed, evidence from clinical and animal

research have proven that physical disruption of plaques may trigger thrombosis, and thus

occlusion. Three types of physical disruptions are assumed [37]. The first type is superficial

erosion, which comprises about 25% [37] to 40% [14, 32] of fatal thrombi. The second type

is the disruption of intra-plaque micro-vessels, which leads to intra-plaque hemorrhage and

sudden plaque progression. The last type is fibrous cap rupture and is the most common

mechanism for plaque disruption and accounts for about 60% [14, 32] to 75% [37] of clinical

events. It is also hypothesized that under many situations, cap rupture is “silent” and

introduces no clinical outcomes. A consequence of these “silent” ruptures is that smooth

muscle cell accumulation and collagen secretion can rapidly transform plaque lesions from

7



atheromatic to fibrotic. With the overwhelming clinical evidence, the prevailing wisdom is

that lumen size itself is not sufficient to predict the vulnerability of atherosclerotic plaque.

2.2 Atherosclerotic Plaque

2.2.1 Plaque Formation

Generally speaking, atherosclerotic plaque is caused by the accumulation of lipid and fibrous

elements in artery walls. Emerging evidence from bimolecular and pathology research sug-

gests the formation of plaque is a series of inflammatory responses of the immune system

triggered by the high concentration of low-density lipoprotein (LDL) in plasma [57, 62, 78].

According to the current notion, atherosclerotic plaques begin as intimal thickening,

which may not necessarily be pathological. The thickened intima regions, however, are

susceptible to the recruitment of lipid and development of atherosclerotic plaques. It has

been shown that low wall shear stress plays immense role in lipid accumulation [33, 36, 49,

110]. During the initial stage of plaque progression, lipid pools form in the intimal layer.

The continued deposition of lipid then increases the size of lipid pools and leads to the

formation of a lipid-rich core. If inflammatory conditions prevail and risk factors persist,

the lipid core may grow, and vessels take a compensatory response to maintain the lumen

size and enlarge [34, 35]. At the same time, smooth muscle cells may migrate from the

media to the intima and cause the proliferation of collagenous tissue. Usually, a fibrous

cap is formed on the lumen side of the lipid core. Extracellular matrix degradation may

occur, caused by proteinases. Moreover, pro-inflammatory cytokines such as interferon-g

(IFN-g) may limit the synthesis of new collagen [57]. Both mechanisms render fibrous cap

over the lipid core thinner and more susceptible to rupture. Rupture of the lipid core may

be lethal or introduce new plaque constituents including: thrombus, intra-plaque thrombi

and calcification.

2.2.2 Lesion Types and Plaque Vulnerability

Based on composition and morphological information, the American Heart Association

published a series of papers describing the classification of atherosclerotic plaques [87, 88, 89]
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Table 1: The Plaque Lesion Types Defined by American Heart Association

Lesion Types Description Histological Appearance
Type I initial lesion isolated macrophage foam cells
Type II fatty streak lesion intracellular lipid deposition
Type III intermediate lesion small extracellular lipid pools
Type IV atheroma lesion lipid core
Type V fibroatheroma lesion fibrotic cap over lipid core (may

be multiple layers) or mainly fi-
brotic or mainly calcified

Type VI complicated lesion defect surface with hemorrhage
and thrombus

†Subcategory of lesion types not listed.

based on composition and morphology. Briefly, plaques are classified into 6 types (Table

1).

More recently, Varmani et al [99], proposed a revised plaque characterization scheme

based on the AHA definition, which facilitates the assessment of plaque vulnerability. In

their report, atherosclerotic plaques are categorized as non-atherosclerotic intimal lesions;

intimal thickening; intimal xanthoma (fatty streak); progressive atherosclerotic lesions;

pathological intimal thickening (with or without erosion); fibrous cap atheroma (with or

without erosion); thin cap atheroma; rupture plaque and fibrotic plaque. More detailed

differentiation specifically for vulnerable atherosclerotic plaques has been done based on

the knowledge from clinical and histological studies [66, 67, 68].

Vulnerable plaque is the type of plaque that triggers clinical manifestations, including

transit ischemia attack, stroke and myocardium infarction. The classic model of vulnerable

atherosclerotic plaque is thin cap atheroma (AHA Type IV) which can be identified by a

bulky lipid core underlying a thin fibrous cap. Besides the rupture-prone thin cap atheroma,

vulnerable plaques also may contain ruptured plaque with sub-occlusive thrombus; erosion-

prone plaque; eroded plaque with sub-occlusive thrombus; plaque with intra-plaque hemor-

rhage; plaque with calcific nodule protruding into the vessel lumen or chronically stenotic

plaque containing calcification and intra-plaque thrombi [67]. Schematic illustration of var-

ious vulnerable plaques is shown in Figure 2.
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Figure 2: Vulnerable atherosclerotic plaques. Figure borrowed from www.vp.org.

It is clear from the above discussion that the vulnerability of atherosclerotic plaques is

reflected by plaque composition and morphology. Generally speaking, all plaques of AHA

type III and up can trigger clinical outcomes, and thus are vulnerable.

2.2.3 Plaque Constituents

Excluding adventitia, atherosclerotic vessels may contain the following tissue types: smooth

muscle cells, collagen, proteoglycans, fibronectin elastic fibers, crystalline cholesterol, cholesteryl

esters, phospholipids, T-lymphocytes, platelets, red blood cells and etc [56]. The plaque

constituents composed of these tissues, according to plaque characterization nomenclature,

are usually called intact media/intracellular matrix, dense to loose fibrous tissue, fibrous

cap, lipid/necrotic core and intra-plaque/overlying thrombus.

The differentiation of fibrous tissue and fibrous cap is somewhat obscure. Generally

speaking, the fibrous cap resides above a lipid core, whilst fibrous tissue appears else-

where in the intima. Their constitutions, in most cases, also differ slightly. Fibrous caps

usually contain more smooth muscle cells than fibrous tissue, and are often infiltrated by

macrophages and lymphocytes [99].
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2.3 Atherosclerosis and Medical Imaging

2.3.1 X-ray Angiography

Currently, the clinical standard screening technique for diagnosing atherosclerosis is X-ray

angiography, which reveals the residual lumen size.

In X-ray angiography, residual lumen size is set as a measure for the vulnerability of

atherosclerosis. When the lumen is 50%-70% occluded, it is considered to be an intermediate

stenosis; when the occlusion is greater than 70 percent, it is considered to be a severe

stenosis. X-ray angiography provides good resolution and contrast, however, it is an invasive

technique. More importantly, as mentioned previously, lumen size is not always a proper

criterion given the positive remodeling nature of atherosclerotic plaques [34, 35]. In the

past decade, it has been shown that most plaques underlying a fatal or nonfatal myocardial

infarctions are less than 70% stenosed [14]. For coronary artery atherosclerosis specifically,

nearly 70 percent of clinical events are triggered by plaque rupture, and the other 30 percent

can be attributed to thrombi formation due to the denudation of endothelial cells [99].

Research has shown that plaque producing non-flow-limiting stenoses account for more

cases of plaque rupture and thrombosis than plaques producing a more severe stenosis [25].

As this was realized, researchers began to investigate plaque imaging techniques that focus

on imaging atherosclerotic plaque itself.

To identify the morphology and composition of atherosclerotic plaques, many medical

imaging modalities including intravascular ultrasound (IVUS), optical coherence tomogra-

phy (OCT), angioscopy, near-infrared (NIR) spectroscopy, multi-slice computed tomogra-

phy (CT), electron-beam computed tomography (EBCT), MRI, etc. have been investigated.

2.3.2 Intravascular Ultrasound

IVUS is a catheter-based, invasive technique based on transmitting and receiving high fre-

quency ultrasonic signals to scan biological systems. In order to directly image a specific

region of the artery, a catheter needs to be placed to the vicinity of the area. Because of the
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fast imaging speed of ultrasound, this technique can provide real-time results. IVUS differ-

entiates plaque components based on their differences in echogenicity. Typical atheroscle-

rotic plaque can be differentiated into [69]:

1. Calcification, with high echoreflective regions with acoustic shadows.

2. Thrombus or lipid region, with hypoechoic regions.

3. Fibrous tissue, with hyperechoic regions.

The spatial resolution of this technique with the current generation catheter is about 100-

250 µm. A major drawback, besides invasiveness, for this technique is the low sensitivity

to detect lipid components in plaques [31].

IVUS elastography, a related technique, relies on the mechanical property differences

between plaque tissues to differentiate them. This technique may provide better tissue

differentiation based on the mechanical properties of plaque constituents [22]. However,

there are still concerns in using this technique under a clinical setting.

2.3.3 Optical Coherence Tomography

OCT is similar, in theory, to IVUS except for the subsititution of ultrasound with infrared

light. It possesses better signal-to-noise ratio (SNR) and resolution [44]. The reported

resolution of OCT is as high as 10 µm. In-vivo studies of this technique prove its potential

in characterizing major plaque components [44]. Despite the superiority in resolution and

SNR to IVUS, this technique suffers invasiveness and poor penetration depth in tissue

(1-2cm).

2.3.4 Electronic Beam CT

EBCT, multi-slice and spiral CT have been proposed by several researchers to inspect the

plaque vulnerability. X-ray’s inherent deficiency in soft tissue contrast, however, makes this

technique insensitive to “soft” plaques. Therefore, calcium scores are usually calculated

based on CT images and used as a biomarker for plaque vulnerability assessment [79].
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Although calcification amount may not be a superior indicator compared to standard

coronary risk factors, this method has its promise in detecting advanced coronary atheroscle-

rosis for patients at intermediate risk [28].

2.3.5 Angioscopy and Near-Infrared Spectroscopy

Angioscopy utilizes an intravascular scope to directly inspect the surface of the vessel lumen.

Research demonstrated the ability of this technique in visualizing ruptured plaque and mural

thrombus on the lumen side of the plaque [96]. The clinical use of this technique is somewhat

hindered by its invasiveness and the limitation of not being able to detect the inner layers

of vessel walls.

In contrast to angioscopy, NIR has better tissue penetration and is suitable for inspecting

the chemical composition of atherosclerotic plaques. It may be promising in assisting other

interventional techniques for plaque vulnerability assessment.

2.4 MRI Plaque Imaging

Compared to the above techniques, MRI has superiorities for both its non-invasiveness

and excellent soft tissue contrast. More importantly, MRI offers abundant image contrast

mechanisms. For these reasons, MR plaque imaging has been an active research area for

the past decade.

2.4.1 Brief Introduction of MRI

The intensity and contrast in MR images are controlled by the MR properties of tissues.

For the vast majority of MR scanning, the signal source is the spinning protons in “water”

1. To simplify the scenario, we can assume a single proton spinning inside the MR scanner.

Since the proton is positively charged, the spinning introduces electric current. According

to Maxwell’s law, this current will introduce a small magnetic field perpendicular to the

spinning plane. The outside magnetic field (B0) produced by the scanner tends to force

this small magnetic field to align with it. This is known as magnetization. In MR imaging,

another excitation magnetic pulse (B1) is utilized to deviate the small magnetization away

1The “water” here also includes lipid and other bio-molecules.
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from the equilibrium position. As a consequence, the small magnetization starts to relax

and finally realigns with B0 (i.e., returning to equilibrium). The relaxation signal is picked

up by the receiver coil of the MR system. It should be noted what is described here is from

a classical mechanics viewpoint. In quantum mechanics, there are only two energy stages

in which a proton can exist: parallel or anti-parallel. The magnetization is their macro

statistics manifestation.

The MR signal’s differences between two or more tissues give the image contrast. The

underlying reason for signal differences is the difference in materials’ MR properties, which

include but not limited to proton density, T1, T2, apparent diffusion coefficient (ADC)

and susceptibility. Proton density can be simply understood as how many protons (mainly

in water) are present in a specific tissue. T1 is also called spin-lattice relaxation, which

is a measure of how fast the excited magnetization recovers back to equilibrium. During

relaxation, each spin loses energy to its nearby environment in this situation. T2 is also

known as spin-spin relaxation, and is a measure of how quickly the excited magnetization

disappears in the direction that perpendicular to B0 (transverse). Each spin, under this

situation, loses energy to its surrounding spins. ADC is a measure of the water molecules’

Brownian motion in tissues. The diffusivity introduces additional magnetization relaxation

via de-phasing. Susceptibility is related to the material’s magnetization property (dia-, para-

and ferro-magnetic). Functional MRI is an example that utilizes susceptibility to generate

MR image contrast. In traditional spin echo and gradient echo sequences, the image contrast

comes from a mixed effect of proton density, T1 and T2. In diffusion weighted imaging,

diffusivity plays an additional role in image contrast. By specifically addressing one of the

properties through manipulating imaging parameters, we can make the MR image weighted

on this property (i.e., image contrast is predominately determined by this property). For

instance, a T2 weighted image mainly reflects the T2 differences among tissues. The whole

process of spin excitation and relaxation is governed by the Bloch equation:

d ~M/dt = ~M × γ ~B − (Mx
~i + My

~j)/T2− (Mz
~k + Mz

0~k)/T1 (1)

Here, ~M is the magnetization; Mx,My,Mz are magnetization component along x, y
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and z, respectively; ~i,~j and ~k are unit vectors; γ is the gyromagnetic ratio and ~B is the

excitation magnetic field strength.

2.4.2 Introduction on MRI Plaque Imaging

Given that lipid core is a good biomarker in evaluating plaque vulnerability, early MR

studies of atherosclerosis aim at characterizing the lipid signal from atherosclerotic plaques

[3, 63, 98]. However, this approach has met with limited success because of poor image

SNR. Indeed, Toussiant et al. [94] showed in a spectroscopic study that the lipid protons in

a lipid core merely contribute less than 10% of the overall MR signal. What is even worse

about this approach is that it may cause false positive diagnosis because lipid core is not

the only component contributing to plaque vulnerability [99].

Because of these issues, T2 weighted MR images with much higher SNR were sought

in order to better characterize plaques [93, 94]. It is shown by several studies [5, 77] that

a quantitative T2 map is able to characterize major plaque constituents. Currently, most

researchers agree that T2 weighting is the best single contrast mechanism for plaque charac-

terization [80]. However, T2 weighted image alone fails to capture the subtle differences of

some plaque constituents. For example, Serfaty et al. [81] demonstrated that a T2 weighted

MR image alone was insufficient in identifying the size of lipid core.

The situation is ameliorated when multiple MR images with different contrast mech-

anisms are used to achieve the characterization goal [13, 27, 28, 30, 83, 102, 106, 109].

This approach is known as multicontrast MRI of atherosclerotic plaque imaging. The basic

hypothesis of multicontrast MRI is that if two tissues share one similar MR property, e.g.

T2, their other MR properties may be different and can be used to separate them. So,

theoretically, the more contrast mechanisms used in multicontrast MRI, the more chance

we have to characterize all plaque components. Based on this technique, improved plaque

characterization can be achieved. Generally speaking, the contrast mechanisms involved in

multicontrast MRI are spin echo/fast spin echo based proton density, T2 and T1 weighted

imaging, which ensure high SNR and resolution of the acquired MR images. Other than

these contrasts, magnetization transfer contrast (MTC) [70], diffusion weighted imaging
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(DWI) [95] and chemical shift imaging (CSI) [93] were also interrogated for providing addi-

tional contrasts. Among these contrast mechanisms, DWI shows promise in assisting proton

density, T2 and T1 weighted MRI to characterize plaques. It was noticed that DWI gives a

much more homogenous appearance of thrombus than other contrast mechanisms [5, 95]. In

addition, Clarke et al [17] reported that DWI offers excellent contrast between extracellular

lipid core and other tissues.

Multicontrast MRI plaque imaging is still in a developing phase, and a major concern

for most researchers in this field is how to make this technique clinically applicable. There

is no standard clinical procedure as of now that utilizes multicontrast MRI alone to diag-

nose atherosclerosis. In the early stages of research, most MR studies were done ex-vivo.

In-vivo studies were mainly focused on carotid plaques [13, 29, 93, 109] because of the

relatively large size of the vessel, low motion effects, and superficial location. Although

some progresses [10, 11, 26, 29, 48] has been made recently in coronary imaging, in-vivo

coronary plaque characterization is still inapplicable because of the technical limitations.

Some researchers achieved a resolution of about 400µm in in-vivo coronary plaque imaging,

which is sufficient for identifying the wall volume and thickness, but insufficient to char-

acterize plaque constituents. Coronary arteries are relatively small and have tortuous and

unpredictable courses. The great motion introduced by cardiac and respiratory motion ad-

ditionally complicates the problem. Therefore, our knowledge about multicontrast MRI of

coronary atherosclerosis is still heavily dependent on ex-vivo studies. A major concern with

such approaches is that the multicontrast MR image contrasts may be different compared

to those under in-vivo conditions.

2.4.3 Image Processing for Tissue Characterization

Data analysis is another major difficulty associated with multicontrast MRI. Generally,

manual segmentation and labeling are needed for plaque characterization. This approach

needs expertise and is time-consuming. In addition, manual characterization usually sub-

jects to inter and intra-observer biases.

Automatic plaque characterization may potentially mitigate these problems. Several
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researchers have investigated the feasibility and assessed the performance of a variety of

automatic plaque characterization techniques [2, 16, 17, 43, 61, 105]. Most of the proposed

methods are based on ex-vivo data [2, 16, 17, 43, 105].

Generally, characterization techniques can be roughly divided into two categories: edge-

based [2, 105] and intensity-based [2, 16, 17, 43, 61] approaches. Edge-based methods

separate different tissues relying on the images’ discontinuity (edge); intensity-based tech-

niques group segments of the same tissue based on their intensity similarity. In this sense,

the edge-based techniques actually incorporate more information (both intensity and spa-

tial) than intensity-based techniques (only intensity). This fact generally endows edge-

based techniques with better performance in segmentation tasks. However, when it comes

to characterization, edge-based techniques usually need considerable operator interaction

especially for multicontrast MRI. For this reason, edge-based techniques were only inves-

tigated on single MR images characterization [105] or applied to detect the boundaries of

vessel walls [2].

The intensity-based techniques can be further divided into two sub-categories: super-

vised [16, 17, 61] and unsupervised [2, 43] approaches. The supervised method needs training

of the classifier prior to the classification, i.e., the operator has to teach the classifier prior to

classification what intensity (or other properties) a specific tissue type should possess. For

MRI, the training is not “universal”. Each time the imaging parameters and/or scanner

change, the classifier has to be re-trained. Unsupervised techniques, on the other hand,

learn by themselves the common intensity (or other properties) that each type of tissue

should possess, and therefore it is more robust. Because only intensity information is uti-

lized in traditional intensity-based techniques, these methods are usually very sensitive to

intensity variations introduced by noise, field inhomogeneity, partial volume effects (PVE),

etc. This problem can be mitigated by including spatial information into the classification

process [43, 58, 59, 60, 73, 103].

Following a similar approach as manual plaque characterization, the vast majority of

automated plaque characterization techniques separate plaque constituents based on the
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comparative contrasts of MR images of each contrast mechanism. The comparative con-

trasts are usually summarized as intensity tables [2, 27, 30, 43, 83], which are used to

differentiate plaque tissues.

It should be noted that characterization is different from classification, at least under

the scope of this thesis. To avoid misunderstanding, we should clarify the notions of classi-

fication and characterization here. Classification is defined as multiple tissue segmentation

(the simplest case is two tissue segmentation), and characterization is defined as the com-

bination of classification and labeling. In other words, classification serves the purpose

of differentiating different constituents, whilst characterization involves both differentiat-

ing tissue constituents and tagging classification results according to each tissue’s specific

characteristics.

For manual plaque characterization, the labeling is performed based on specific inten-

sity patterns (intensity table) for each plaque constituent manifested in multicontrast MR

images. However, these patterns may alter due to change of imaging parameters. Compara-

tively, the tissue MR properties, including T1 (spin-lattice) relaxation time, T2 (spin-spin)

relaxation time, proton density and ADC, may potentially be a more consistent measure

in plaque constituents labeling since they are tissue type independent and only rely on

temperature and field strength.

2.5 Contrast Mechanism vs. Acquisition Time

It is always desirable to have more contrast mechanisms when practicing atherosclerotic

plaque characterization since more information helps better in separating the plaque com-

ponents. Clark et al. [17] used eight contrast mechanisms including proton density, T2,

and T1 weighted fast spin echo, steady-state acquisition, T1 weighted spoiled gradient-echo

with and without magnetization transfer, and diffusion weighted spin echo sequences to

automatically characterize plaque constituents.

Despite the apparent advantage, it is impractical to include too many contrast mech-

anisms under clinical settings due to the lengthy acquisition needed. Moreover, too many

contrast mechanisms impose additional difficulty on registering MR images. Because of the
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high resolution and SNR required to characterize plaque constituents, fast imaging tech-

niques such as echo planar imaging, fast gradient echo and fast imaging with steady state

precession (FISP) are not suitable for reducing the acquisition time. In other words, viable

fast imaging schemes should not sacrifice image resolution and SNR in multicontrast MRI.

2.6 Conclusion

In this chapter, we reviewed the clinical aspects of atherosclerosis and point out the need

of identifying vulnerable plaques in order to prospectively assess the risk of clinical events.

Many clinical tests including C-Reactive Protein (CRP) test, CT angiography and IVUS

are currently available to predicate the vulnerability of atherosclerosis. Emerging clinical

evidence indicates that the plaque constituents and morphology could provide more accurate

predication about clinical risk. A new technique, called multicontrast MRI, is promising

in characterizing atherosclerotic plaques and assessing their vulnerability. There are still

some technical difficulties associated with this approach, which challenge its application

under clinical settings. In addition, the time cost of multiple scans in multicontrast MRI

has not been addressed. Moreover, due to the fact that most multicontrast MRI studies

on coronary plaques were conducted on excised vessel specimens, systematic evaluation of

vessel “freshness” on multicontrast MRI results needs to be performed to avoid potential

pitfalls.
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CHAPTER III

FUNDAMENTALS OF MR PHYSICS AND IMAGE CONTRAST

3.1 Introduction

In this section, the commonly known mathematical formulations of MR signal expression

will be introduced. This outline of MR physics serves as theoretical background to better

understand the contrast in MRI. Moreover, it provides insights about tissues’ quantitative

properties including T1, T2, proton density as well as diffusivity.

3.2 The Basics of MR Signal and Pulse Sequences

Generally speaking, magnetic resonance imaging focuses on detecting the magnetoelectrical

signal from the unpaired protons. The spinning of a proton gives rise to a small magnetiza-

tion. Under normal situations, the magnetization has no preferred directions and thus the

bulk magnetization manifested is zero. However, when an outside magnetic field is present,

slightly more magnetizations tend to algin with the outside field because it is a low energy

configuration. As a result, a bulk magnetization parallel to the outside magnetic field is gen-

erated. Under this classic model, it can be shown that once the bulk magnetization deviates

from the outside magnetic field direction, a torque will be imposed to the magnetization

and cause it to precess around the outside magnetic field. As mentioned earlier, the outside

magnetic field is usually known as B0. The frequency of the precession is usually known as

the lamor frequency and can be calculated as w = γB0, where γ is the gyromagnetic ratio.

One of the fundamental theories that MRI relies on is magnetic resonance, which indi-

cates that the magnetization will be nutated (deviate from the outside magnetic field while

doing precession) away from the outside magnetic field by an additional magnetic field, B1,

that has the same frequency (resonance) as the lamor frequency. In quantum mechanics,

there are only two energy configurations for precessing protons: parallel and anti-parallel.

Specific quantum energy, determined by the lamor frequency, is needed to allow the config-

uration change for proton precession. Classically, this property is easily understood under
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the framework of a rotating coordinate system. If the rotational frequency of this system

is equal to lamor frequency, the internal magnetization will be stationary in this reference

system. If B1 is precessing at the same frequency, it is also stationary in the reference

coordination. Under this framework, the torque on the magnetization imposed by B1 is

constant and keeps on flipping the magnetization. Otherwise, its effect will be canceled

out after integration over time. Since the lamor frequency is at radio frequency range for

protons under the operational magnetic field of MRI systems, the B1 is usually known as

an RF pulse.

The Bloch equation (Eq. (1)) introduced in the last chapter is the central law governing

magnetic resonance signals. It contains two parts: excitation and relaxation. The excitation

part of Bloch equation is the first term on the right hand side. Usually, the excitation process

is very quick so that the relaxation during this period can be ignored. To simplify the

Bloch equation, the vector form of magnetization is usually decomposed to the orthogonal

coordinates. Accordingly, the Bloch equation is usually expressed in matrix form. The

matrix expression of Bloch equation without relaxation is shown in Equation (2). The

prime is used to indicate that it is in the rotating coordinating system.


d

~−→
Mx′/dt

d
~−→

My′/dt

d
~−→

M z′/dt

 =


0 0 −γB1y′

0 0 γB1x′

γB1y′ −γB1x′ 0




d
~−→

Mx′

d
~−→

My′

d
~−→

M z′

 (2)

MRI systems rely on coils (RCL circuits) to transmit RF pulses and detect the MR

signals (proportional to magnetization). In order to explain the contrasts of MR images,

relaxation needs to be introduced. Generally speaking, relaxation is the process that the

deviated magnetization, nutated by B1, returns to equilibrium (alignment with the outside

magnetic field). Basically, there are two factors contributing to the relaxation of the mag-

netization: spin-lattice relaxation and spin-lattice relaxation. The spin-lattice relaxation is

usually called T1 relaxation, and it is a measure of how the longitudinal magnetization ( ~Mz)

regrows back to its equilibrium value ( ~M0). The spin-spin relaxation, also known as T2 re-

laxation, describes how fast the transverse magnetization ( ~MT = ~Mx + i ~My) disappears.
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All the factors that contribute to T1 relaxation equally affect T2 relaxation. Therefore, T2

is always smaller than T1. Details about the relaxation can be referred to the BPP theory

proposed by Bloembergen, Purcell and Pound [9]. Including relaxation in Equation (2),

the Bloch equation then can be reformulated to Equation (3).


d
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d
~−→
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0

0

d ~M0/T1

 (3)

If the above Bloch equation is applied to several homogenous materials, the signal will

be different for different materials because of their characteristic equilibrium magnetiza-

tions (proportional to proton density), T1 and T2 values. In other words, the contrast of

MR images is contributed by the tissue’s characteristic MR properties, including but not

restricted to, T1, T2 and proton density. The amount of contribution of each MR property

can be controlled by the MR pulse sequence and will be explained in more detail later in

this chapter.

Before providing the description of MRI pulse sequence, the issue of signal localization

has to be resolved. So far, we have been focusing on homogenous tissues. In order to image

mixtures of tissues in biological systems, there has to be a way to localize the signal. The

first successful method for signal localization, know as zeugmatography, was presented by

Nobel laureate Dr. Lauterbur in 1973 [52]. In this novel paper, the idea of using gradients

to create differences between spatial locations led to the modern technique of magnetic

resonance imaging. This process is usually called spatial encoding. As a general statement,

a gradient field is needed for all the dimensions whose spatial location is to be resolved.

For instance, gradients are needed along the three axes for three dimensional cartesian MR

imaging.

Theoretically, spatial encoding can be easily understood from fundamental signal pro-

cessing principles. Assuming a biological system can be divided into voxels of equal sizes,

each voxel can be expressed using its cartesian coordinates (x, y, z). If there are gradients

(Gx, Gy, Gz) applied during time Tstart and time Tend, the complex transverse magnetization
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can be expressed as:

MT (x, y, z)e−jγ
∫ Tend

Tstart
(Gx·x+Gy ·y+Gz ·z)dt

e−jγB0Tend (4)

Since the last exponential is solely caused by lamor precession, it can be dropped in the

rotating frame, and the complex signal can be simplified as:

MT (x, y, z)e−jγ
∫ Tend

Tstart
(Gx·x+Gy ·y+Gz ·z)dt (5)

The presence of the gradients essentially causes the differences in lamor frequency inside

the biological systems depending on the spatial location. If the gradients are constant for

all the spatial locations, the mixed signal MR coil detected is proportional to the signal

integral of all the voxels assuming the size of each voxel is (dx, dy, dz). It is formulated as

Equation (6).

S =
∫

X

∫
Y

∫
Z

MT (x, y, z)e−jγ
∫ Tend

Tstart
(Gx·x+Gy ·y+Gz ·z)dt

dxdydz (6)

Equation (6) can be simplified to (7) by substituting γ
∫ Tend

Tstart
Gxdt, γ

∫ Tend

Tstart
Gydt and

γ
∫ Tend

Tstart
Gzdt with kx, ky and kz. Here, γ equals γ/2π.

S(kx, ky, kz) =
∫

X

∫
Y

∫
Z

MT (x, y, z)e−2πj(kx·x+ky ·y+kz ·z)dtdxdydz (7)

It is a boon to MRI that Equation (7) demonstrated that the magnetization, MT (x, y, z),

and the acquired signal, S(kx, ky, kz), is a Fourier pair. From a signal processing point of

view, the acquired data are in the frequency space. In MR physics, this space is usually

called k-space. Basic Fourier theory indicates that a biological system can be represented

by N ×M × L voxels after an inverse Fourier transform of N ×M × L evenly distributed

k-space data. From the above discussion, it is apparent that in order to gather these

evenly distributed points in k-space, multiple acquisitions with different gradients integral

(magnitude or duration) are needed. The combination of RF pulses and gradient fields

associated with appropriate timing, known as pulse sequence diagram (PSD), is used to

collect the k-space data. For technical details about MR pulse sequences, the readers are

referred to books by Vlaardingerbroek [100], Haacke [39] and Bernstein [6]. A simple two
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dimensional spin echo PSD is illustrated in Figure 3. Spin echo and its variant sequences

are the workhorse of clinical MR imaging for their comparative high SNR. Throughout

this dissertation, most of the imaging sequences are spin echo based. Therefore, important

aspects of this type of sequence will be covered in the following discussion.

In MRI, relaxation is not the only contributor to signal decay. Both gradients and

magnetic field inhomogeneity cause magnetizations at different spatial locations to precess

at different frequency, which additionally complicates the MR signal. Fortunately, none of

these effects is irreversible. For most cases, gradients are essential for MR signal localization

(see above description). There are situations, however, when the gradient effect needs to

be reversed. For example, in Figure 3, the slice selective gradient for the 90 degree pulse is

associated with negative polarity gradient to cancel out the de-phasing effect. Technically,

the effect of a specific gradient can be canceled by forcing the integral of this gradient to be

zero at the time of signal acquisition. This treatment makes the phases at different locations

identical 1, thus maximizing the signal (gradient echo). Field inhomogeneity, on the other

hand, is always undesirable for imaging. Therefore, its effect needs to be minimized to avoid

signal loss and image artifacts. The easiest treatment for this issue is to acquire signal as

soon as the magnetization is flipped. This ensures that the magnetization signal decay

due to field inhomogeneity is minimal. Another treatment is the spin echo (Hahn echo)

technique. Spin echo technique relies on the administration of two RF pulses - a 90 degree

pulse and a 180 degree pulse. To understand the technique, two magnetizations under

different fields can be considered. After the first 90 degree pulse, both magnetizations are

flipped into the transverse plane. Because of the difference in magnetic field strength, these

two magnetizations precess at different frequency and lose phase. Assuming the phases are

φ and ϕ for the faster and slower magnetizations after a period of TE/2, respectively, the

second 180 degree pulse will reverse the phase. That is, after the 180 degree pulse, the phases

become −φ and −ϕ for the faster and slower magnetizations, respectively. After another

TE/2, both magnetizations have zero phase and the signal (spin echo) is maximized. TE

is usually called echo time in MRI.

1Assuming the outside magnetic field is perfectly homogenous.
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Figure 3: Spin echo pulse sequence diagram. RF is the radio frequency electromagnetic
pulse. Gss is the slice selective gradient - for a 90 degree pulse, a specific slice is selected
based on the frequency range rendered by the Gss. this gradient introduced gradient de-
phasing and must be refocused using a gradient with negative polarity. For 180 degree
pulse, the slice selective gradient is non-selective (gradient is actually off). Therefore, no
refocusing gradient is needed. GPE is the phase encoding gradient, and for each repetition
time, TR, the gradient is increased by a constant amount (arrow shows the direction). GRO

is the readout gradient. The portion before 180 degree pulse is the read refocusing pulse,
whose area is half of the portion after 180 degree pulse. This ensures the frequency space
along the readout direction is sampled symmetrically around zero. The signal is acquired
during the acquisition time, AT, with an Analog-to-Digital converter (ADC).

In order to cover the k-space for MRI reconstruction, the pulse sequences (e.g., Figure

3) need to be run multiple times. The duration for each run is called repetition time or TR.

For better understanding of MR PSD, the k-space trajectory (coverage scheme) needs to be

mentioned. Taking Figure 3 as an example, its corresponding k-space trajectory is shown

in Figure 4. KRO is incremented with the increment of time (during that acquisition time,

AT , of GRO), while KPE is incremented through the increment of phase encoding gradient,

GPE . For each TR, a specific line of KRO is acquired. Therefore, if N lines is needed along

the KPE direction, this specific pulse sequence needs to be repeated for N times.

The presence of gradients changes the MRI signal. This change is reflected in the Bloch

equation shown in Equation (8), where ~r is the direction unit vector.
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Figure 4: K-space trajectory corresponding to the PSD of Figure 4. KPE is along the
phase encoding direction and K is along the readout direction.
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Without detailed mathematical derivation, the analytical solution of the Bloch equation

in the image domain under the spin echo PSD framework is shown in Equation (9). In

this equation, S(x, y, z) is used to symbolize the signal intensity at location (x, y, z) in

the spatial domain; M(ρ(x, y, z), T, B0) is the magnetization that is determined by proton

density ρ(x, y, z), temperature T and external magnetic field B0.

S(x, y, z) ∝ M(ρ(x, y, z), T, B0)(1− 2e−(TR−TE/2)/T1 + e−TR/T1)e−TE/T2 (9)

In spin echo based sequences, TR is usually much greater than TE. Therefore, Equation

(9) is usually simplified as Equation (10).

S(x, y, z) ∝ M(ρ(x, y, z), T, B0)(1− e−TR/T1)e−TE/T2 (10)

Equation (10) provides the fundamental basis in understanding MRI contrast mecha-

nism. In cases of large TR and TE, the RHS of Equation (10) can be approximated by
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M(ρ(x, y, z), T, B0)e−TE/T2. Therefore, T2 becomes the dominant factor contributing to

the signal and the image contrast is said to be T2 weighted. When TR is large and TE is

small, on the other hand, the RHS of Equation (10) approximates to M(ρ(x, y, z), T, B0).

Under this situation, the image contrast will be predominately determined by proton density

(proton density weighted). The last configuration is when both TR and TE are small. Under

this setting, the RHS of Equation (10) approximates to M(ρ(x, y, z), T, B0)(1− e−TR/T1),

and thus the image contrast is T1 weighted.

Besides these three basic contrast mechanisms, pulse sequences can be designed to reflect

other MR properties that can separate plaque tissues. For plaque imaging, an additional

MR property besides T1, T2 and proton density is water diffusivity. Studies [5, 95] show

that water diffusivity may be critical in characterizing the mural or intra-plaque thrombus.

The reason that water diffusivity will affect the MRI signal is because of the local variation

of the magnetic field. Even if the magnetic field is perfectly uniform, there are variations at

the molecular level because of chemical environment differences from location to location.

Part of the effect from magnetic field variation is irreversible because of the Brownian motion

of water molecules (protons). Signal from a specific proton can be refocused with a spin

echo sequence if it builds up the same amount of phase during the de-phasing and rephasing

period. This is generally not true for protons with motion. This effect can be exaggerated

by adding diffusion gradients in the PSD (Figure 5). It should be noted that the diffusion

gradients have directionality. In Figure 5, only diffusion along the slice selected direction

is sensitized.

With the diffusion gradients, an additional exponential decay is added to Equation

(10) to yield Equation (11), where D is water diffusivity; Gd is the pulse field gradient;

∆ and δ are the diffusion time and duration of the pulse gradient, respectively. Usually,

γ2G2
dδ

2(∆− δ/3) is replaced by b to simplify the equation.

S(x, y, z) ∝ M(ρ(x, y, z), T, B0)(1− e−TR/T1)e−TE/T2e−γ2G2
dδ2(∆−δ/3)D (11)
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Figure 5: Spin echo pulse sequence diagram with diffusion gradient. The purple area
shows the diffusion gradients. ∆ is the diffusion time and δ is the diffusion gradient time.

3.3 Quantitative MRI

From the above discussion, it has can be seen that the contrast of MR images is controlled

by several MR properties. Under certain situations, it is desired to separate these effects.

This task can be accomplished by fitting the MR signal according to an expected model

and re-synthesizing fitting parameters into quantitative maps, which are also known as

quantitative MRI.

The basic idea of quantitative MRI computation is not complicated, although it may be

a different story for sequence design and map computation. For spin echo based sequences,

fortunately, both the acquisition scheme and map calculation is comparatively easy. For

simplicity, we can assume the PSD of Figure 5 and its corresponding signal expression of

Equation (12) 2. Overall, there are four unknowns for this equation: M(ρ(x, y, z), T, B0)

(proton density), T1, T2 and diffusivity (D). Theoretically, we only need four equations,

or equivalently four combinations of TR and TE, to calculate these values. In practice,

however, least squares are usually applied to over-determined equation matrix for better

accuracy. For instance, in computing quantitative T2 maps, multiple (≥ 2) TE values were

2b equals zero without diffusion gradients.
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selected with a fixed TR and b values. Under this situation, the signal equation can be

simplified as Equation (13). The T2 value of plaque components can then be calculated by

fitting the pixel intensities on these images to an exponential decay. The fitting process can

be further simplified by taking a logarithm transformation of the equation. This results in

a linear fit of Equation (14).

S(x, y, z) ∝ M(ρ(x, y, z), T, B0)(1− e−TR/T1)e−TE/T2e−bD (12)

S(x, y, z) ∝ Constant · e−TE/T2 (13)

ln(S(x, y, z)) ∝ ln(Constant)− TE/T2 (14)

In a similar manner, diffusivity can be computed by fixing the TR and TE values while

varying the b value. The T1 value can be calculated by fixing TE and b. Nonlinear fitting

has to be performed for T1 calculation since the equation can not be linearized.

3.4 Pulse Sequence Modification for Quantitative MRI

As seen in previous discussions, the diffusion gradients render the MR image contrast dif-

fusion weighted. Without these gradients, there are still small contributions from water

diffusion to MR image contrast because of the interactions between other imaging gradients

(e.g., the read refocusing and readout gradients behave as a pair of diffusion gradients). In

traditional spin echo and turbo spin echo sequences, this additional diffusion effect is shown

to be dependent on the echo time, TE. Specifically, without any derivation, Equation (10)

should be replaced with the more accurate expression: Equation (15).

S(x, y, z) ∝ M(ρ(x, y, z), T, B0)(1− e−TR/T1)e−TE/T2e−γ2Gr
2(AT/2)2(TE−AT/6)D (15)

In this equation, Gr
2 is the magnitude of the readout gradient. For high resolution

acquisitions, since Gr
2 is usually high, the effect of this unwanted diffusion becomes greater.

Because of the unwanted diffusion, the measured quantitative T2 values differ from their
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real values. Under this situation, the calculated T2 value can be expressed by the following

Equation (16).

1/T2cal = 1/T2real + γ2Gr
2(AT/2)2D (16)

In the current study, accurate measurements of tissues’ T2 values are important in

evaluating multicontrast MRI and characterizing plaque components. Therefore, to better

estimate the quantitative T2 values, the traditional spin echo sequence was modified by

moving the phase encoding and read refocusing gradients from prior to the 180 degree RF

pulse to after it [65]. With this modification, the diffusion effect introduced by imaging

gradients is no longer dependent on TE. Therefore, the additional diffusion term becomes

a constant during the T2 computation, and thus has no effect on the calculated T2 value.

To evaluate its performance, we compared the measured T2 values of Medium 199

tissue culture solution using traditional and revised sequences. The T2 value (T = 20◦C)

calculated using the spectroscopic Carr-Purcell-Meiboom-Gill (CPMG) sequence was 823ms

and was set as the gold standard. The T2 values calculated using traditional and modified

SE imaging sequences were 128ms and 798ms, respectively. It can be seen that the modified

sequence gives a much better T2 estimation. Another advantage in using this sequence is

the SNR improvement due to reduced diffusion interference. Figure (6) shows the PSD of

this modification.

For diffusion weighted sequences, the diffusion gradients are usually regarded as the

only contributor to diffusion contrast. This assumption, however, is only an approxima-

tion. There are interactions between imaging and diffusion gradients that cause additional

diffusion during the MR acquisition as previously mentioned. This is known as “cross term

effect”, and it causes inaccuracy in ADC measurement. To better understand the “cross

term effect”, it is beneficial to examine the signal equation of DWI (Eq. (17)).

S = S(0)e−D
∫

(
∫ t
0 G(τ)dτ)2dt (17)

In this equation, S(0) is the MR signal without diffusion. If gradient G is broken into
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Figure 6: Traditional(upper) and modified(lower) spin echo sequences. The modified
sequence minimized the effect from unwanted water diffusion caused by the integrations
from imaging gradients.
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an imaging gradient Gi and a diffusion gradient Gd, the equation is reformulated as:

S = S(0)e−D
∫

(
∫ t
0 Gi(τ)dτ+

∫ t
0 Gd(τ)d)2dt (18)

Additionally, if we replace
∫ t
0 Gi(τ)dτ with fi and

∫ t
0 Gd(τ)dτ with fd, this equation is

simplified as:

S = S(0)e−D
∫

(fi+fd)2dt = S(0)e−D
∫

(f2
i +2fifd+f2

d )dt (19)

From this equation, it can be seen, when changing fd in calculating D, the “cross term”,

fifd, changes as well despite fi remaining constant. As a consequence, the measured water

diffusion coefficients employing this sequence deviate from their physical values. Based on

the scheme proposed by Hong et al. [42], a modified diffusion weighted spin echo sequence is

used in the current study for quantitative measurement of the plaque components’ diffusiv-

ities. In this modified scheme, each lobe of the diffusion gradients is replaced with a bipolar

gradient pair. This treatment ensures that the cross term effect is canceled. Detailed math-

ematical justification of this scheme can be found in reference [42]. In Figure (7), both the

traditional and modified diffusion weighted sequence are shown. The corresponding fi, fid

and fifd are shown in Figure (8). It can be seen that in the modified DWI sequence (Fig.

8(B)), the “cross term effect” integrates to zero at the time of signal sampling, and thus

has no effect on ADC calculation.

The ADC value (T = 20◦C) of water calculated applying this revised sequence was 2.5×

105cm2/s in all three orientations (phase encoding, slice selective and readout directions).

The traditional sequence, however, gave different ADC values for different orientations. The

reference value of water ADC value was calculated as follows:

1. Calculate ADC(1) by using DWI images with gradient 0, +g1, +g2, +g3 ...

2. Calculate ADC(2) by using DWI images with gradient 0, -g1, -g2, -g3 ...

3. The ADC value is the geometric mean of ADC(1) and ADC(2).

This technique cancels out the “cross term” but requires twice the acquisition time. The

water’s ADC value using this method was 2.5 × 105cm2/s as well, which validated the

performance of our modified sequence.
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Figure 7: Traditional (upper) and modified (lower) pulse field gradient sequences. Each
single lobe of the diffusion gradients is replaced by a bipolar gradient pair to cancel the
effects from the interactions of imaging gradients.
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Figure 8: The fi, fid and fifd for traditional (A) and modified (B) diffusion weighted
sequences. It can be seen that in the modified DWI sequence, the “cross term effect”
integrates to zero at the time of signal sampling.

3.5 Summary

Two important aspects of MRI covered in the current chapter are: contrast mechanisms

and tissue’s biophysical properties. These knowledge is essential for the understanding of

multicontrast MRI plaque imaging and MR property based tissue labeling, which will be

touched in later chapters.
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CHAPTER IV

MULTICONTRAST MRI OF CORONARY PLAQUES UNDER

SIMULATED IN-VIVO CONDITIONS

4.1 Introduction

Several technical difficulties hinder the clinical practice of coronary vessel wall imaging.

First of all, the tiny size of coronary atherosclerotic plaques requires high resolution scans

to reveal the morphological details needed in evaluating plaque vulnerability. Acquisition-

wise, high resolution usually means compromise of the SNR and increase in scanning time.

Analysis-wise, small plaque size makes registration of MR images with different contrast

mechanisms more difficult. Additionally, the deep location of coronary vessels in the human

body usually causes significant SNR reduction due to the relatively low sensitivity of car-

diac coils. Moreover, physiological motions including heart beat and respiration inevitably

introduce artifacts and increase difficulty in high resolution scans. Despite the recent de-

velopment in coronary vessel wall imaging owing to imaging techniques like navigator echo

and radial sampling, it is still the consensus that current resolution and SNR are insufficient

for coronary plaque characterization.

Due to these difficulties, MR plaque imaging studies are mainly focused on carotid

plaques. For coronary atherosclerotic plaques, only limited MR studies have been conducted

under ex-vivo conditions. Valuable knowledge has been gained from ex-vivo research on

coronary plaque MRI. However, there are concerns that tissue preservation may affect MR

image contrast and hence influence plaque characterization. Therefore, assessing the effects

of preservation is critical to ensure that multicontrast characterization techniques developed

for preserved coronary plaques still apply for in-vivo imaging.

4.2 Coronary Artery Preparation

In the current study [91], all the coronary artery samples were acquired from the explanted

hearts of transplant patients recruited at Emory University Hospital. Totally, fifteen vessels
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were selected for the current study. Healthy and extremely calcified vessels were excluded.

For all the samples, the following vessel preparation procedure was conducted. The

explanted hearts were placed in ice-cold Kreb’s solution immediately after explantation.

Coronary arteries were removed from the transplanted heart within an hour and placed in

Medium 199 and kept in an incubator at 37◦C until scanned. Medium 199 contains inorganic

salt, vitamins, amino acids and several other components that support the growth of cells.

MRI scans were performed on average 4± 2 hours after explantation (all within 24 hours of

surgery). Following the scan, MR images were inspected to identify atherosclerotic plaques

and evaluate image quality. The vessels were fixed and stored in 10% buffered formalin

solution (Fisher Scientific, Pittsburgh, PA) for 48 hours. Ten of the fifteen vessels were

scanned a second time to evaluate the influence of preservation on multicontrast MRI of

coronary plaques. The other five vessels did not undergo the second scan for reasons related

to scanner availability. In the ten vessels that were scanned twice, five were from heart failure

patients with non-ischemic etiology and five vessels were from heart failure patients with

ischemic cardiomyopathy. Typical atherosclerotic plaque components, including necrotic

core, fibrous cap, calcification, and dense fibrous tissue were present in the vessels. The

study was approved by the university’s institutional review board.

4.3 Tissue Culture Chamber

To approximate in-vivo conditions, a custom-designed MR-compatible tissue culture cham-

ber was built to keep temperature, pressure and nutrient environment of the vessels at

in-vivo levels during MR scanning. Figure 9 shows the front and side view of the chamber.

The chamber consists of a 35mm diameter cylindrical polycarbonate tube, which holds

vessel specimens and tissue culture media. End caps are present on each side of the tube.

On each cap, there is a cannula connected to the inside of the vessel, then to plastic tubes

that run outside the bore. The purpose of these plastic tubes is to perfuse the vessels and

to maintain a specific inner pressure in order to maintain vessel morphology mimicking to

the in-vivo situation. An orifice on the tissue culture chamber provides access to an MR

compatible thermocouple so that the temperature can be monitored during the imaging
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Figure 9: MR-compatible tissue culture chamber (a) front-view and (b) side-view of the
chamber inside the birdcage coil; (c) detailed view of the chamber with description.

session. The chamber was filled with Medium 199 (T1≈ 3.4s at 37◦C) to provide necessary

nutrient environment for vessel tissues. Temperature was kept at 37◦C via warm water

circulating around the chamber through a plastic tube. The use of tissue culture system in

simulating the in-vivo conditions has been justified by previous research [75]. Furthermore,

vessels were imaged within 24 hours to ensure the viability of tissue constituents.

4.4 MRI Acquisition

Prior to the acquisition, plastic markers producing no MR signal were attached to each

vessel and the vessel was mounted on cannulas. These markers contained no MR signal and

were used to register MR images with histological slices during image analysis.

The MR scans were conducted on a 4.7T small animal MR scanner (INOVA, Var-

ian, Inc., USA) with a 37-mm-diameter 16-element birdcage quadrature coil. Proton den-

sity weighted SE (TR/TE=3.5s/15ms), T2 weighted SE (TR/TE=3.5s/50 − 60ms), T1

weighted SE (TR/TE=0.9 − 1.4s/15ms) and diffusion weighted SE (b = 234s/mm2) im-

ages were obtained with four signal averages. In addition, two partial T2 weighted SE

(TR/TE=3.5s/30− 40ms) and one to four diffusion weighted images (b = 0− 300s/mm2)

were acquired to measure quantitative T2 and ADC values for plaque components. Field-

of-view (FOV) was 3cm× 3cm and an acquisition matrix of 256 × 256 was used (resolution
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after zero filling=58.6µm × 58.6µm). Slice thickness was 1mm. Multiple slices were ac-

quired alternatively to avoid cross-talk. Imaging parameters for the preserved vessels were

kept the same as those for the fresh vessel to facilitate comparison. Eighteen to twenty-one

slices were acquired per vessel with no gap.

4.5 Histology

After imaging, each of the 15 vessels were embedded in Methyl Methacrylate (MMA) and

5µm serial sections were obtained. Hematoxylin and Eosin (H&E), Masson’s Trichrome,

Smooth Muscle Actin, and Verhoeff-Van Gieson stains were then performed on each section.

The histological sections serve as the “reference standard” in evaluating plaque component

characterization. Decalcification was not performed prior to the sectioning so as to keep the

calcification information. The following vascular components were identified by histology:

lipid/necrotic core, fibrocellular/fibrous cap, fibrous tissue, thrombus, media/extracellular

matrix and calcification.

In general, multicontrast MR images correlated well with corresponding histological

stains. Two examples, a relatively healthy vessel (Fig. 10(A)) and a fibrotic plaque ((Fig.

10(B))), are shown to demonstrate this. In the following section, specific attention will be

paid to the comparison between multicontrast MR results of fresh and preserved vessels.

4.6 Effects of Vessel Preservation on Multicontrast MRI

Atherosclerotic tissue types in all the ten vessels scanned under fresh and preserved condi-

tions included dense fibrous tissue, calcification, media/extracellular matrix, lipid core, fi-

brous cap, fresh thrombus, intimal hyperplasia, neo-intima and sections of relatively healthy

vessel. Among the five vessels from subjects with ischemic dilated cardiomyopathy, two con-

tained fibrotic lesions (AHA type Vb-Vc); one contained a complicated lesion with overlying

thrombus (AHA type VI); and two contained fibroatheroma plaques (AHA type V).

4.6.1 Qualitative Comparison Between “Fresh” and “Preserved” Multicon-
trast MRI

The multicontrast MR images of both fresh and preserved vessels were aligned with the

help of plastic markers and morphological landmarks. The results demonstrated a good
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Figure 10: MR and corresponding histological images of fresh coronary vessels. (A) the
T2 weighted MR image and the H&E stain of a comparatively healthy vessel, (B) Proton
density, T1 and T2 weighted MR images of a fibrotic plaque and smooth muscle actin stain
from the same location.

visual correspondence between MRI scans and histology.

An example comparison of fresh scan, preserved scan and histology from an advanced

lesion is shown in Figure 11. The images shown are typical for the results of all vessels.

In general, the visual appearance of the multicontrast results from scans under fresh and

preserved conditions were comparable. The contrasts between plaque tissues does not seem

to be affected by the viability and freshness of most of the plaque tissues. However, in

one case, we identified an apparent intensity change for fresh mural thrombus. This case is

shown in Figure 12. It can be seen that the mural thrombus identified on histology changes

from hypo-intense to iso/hyper-intense after the preservation.

It was not surprising that the appearance of thrombus was different between fresh and

preserved conditions. In previous studies, it has been reported that thrombus usually gives

a non-uniform appearance in MR images [19, 80]. The fresh thrombus is hypo-intense

because of the iron-bearing red blood cells. Iron products, behaving similar to contrast

agents, change the local magnetic field and accelerate MR signal de-phasing. It affects

T2 and diffusion weighted images via proton diffusion. T1 and proton density weighted
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Figure 11: Comparison of multicontrast (T2, T1, Proton Density and Diffusion Weighted)
MRI results with histology. (A) multicontrast MRI acquired under fresh and preserved
conditions for the same location, (B) corresponding Masson’s Trichrome stain.

images are less affected because of the shorter TE value used. In this study, the age of the

thrombus at the fresh stage was not known. From its MR appearance, it was postulated to

be comparatively fresh.

4.6.2 Signal-to-Noise Ratio Comparisons

Signal-to-Noise (SNR) for media, fibrous cap, necrotic core and dense fibrous tissue were

measured on proton density and T2 weighted MR images for both “fresh” and “preserved”

scans. The SNR of each plaque component is defined as its mean signal intensity divided

by the standard deviation of noise, which is calculated from regions without MR signal (e.g.

air). The grouped results were compared using a two-tailed, paired sample t-test. SNR was

not measured for T1 and diffusion weighted MR images because of the lower contrast of

plaque tissues in these images.
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Figure 12: Example shows apparent signal intensity change for fresh thrombus after the
preservation. Thrombus changes from hypo-intense at fresh stage to hyper-intense after
preservation on T2 and diffusion weighted images. (a) shows the multicontrast MR images
and (b) shows the corresponding H&E stain.

The SNR is determined for the fresh and preserved conditions for each plaque component

are summarized in Table 2. The comparison showed better SNR was obtained under

preserved conditions over fresh conditions, which may be due to the fixation process during

preservation. This small change (p = 0.02) in SNR may imply small changes in tissue’s MR

properties.

Thrombus was excluded from the SNR analysis because of the non-uniformity of its

intensity on MR images. In contrast to other plaque constituents, thrombus did show

apparent signal change between MR scans under fresh and preserved stages. In the thrombus

region of one vessel, intensity changed from hypo-intense at fresh stage to hyper-intense after

preservation (Fig. 12). As mentioned above, the change in signal intensity of thrombus

depends on its age and may be related to the reduction of intact red blood cells filled with

iron-rich products from deoxyhemoglobin breakdown [39].

4.6.3 T2 and ADC Comparisons

Quantitative T2 and ADC maps were calculated using the acquired MRI data. Quantitative

T2 and ADC maps are images whose pixel intensities reflect the T2 and ADC values of the

spatial location, respectively. The computation of these maps relies on the theory discussed
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Table 2: SNR of Major Plaque Components in T2 and Proton Density Weighted MR
Images of Fresh and Preserved Vessels

Media Dense
Fibrous

Fibrous
Cap

Lipid
Core

Grouped
p-value

PD Weighted Fresh 32.6±3.9 22.4±7.4 35.2±1.7 25.6±0.9 0.002
Preserved 35.6±2.5 24.9±13.3 35.8±3.6 27.2±0.1

T2 Weighed Fresh 15.2±12.1 6.2±2.6 22.4±8.5 9.7±7.8 0.003
Preserved 16.5±16.8 6.3±3.4 24.3±3.9 11.4±0.7

†Thrombus not included for its non-uniform intensity appearance in PD and T2
weighted MR images.
‡STDs shown are STDs between slices and vessels.

Figure 13: The T2 and ADC maps at a location of a plaque with necrotic core.

in the quantitative MRI section. In our study, four MR images (TR/TE = 3.5s/30−60ms)

were used to generate the quantitative T2 maps and two to five diffusion weighted MR

images (b = 0−300s/mm2) were used to generate the ADC maps. In Figure 13, a T2 map

and an ADC map at a location with necrotic tissue is shown.

To measure the quantitative T2 and ADC values for plaque components, the fitted

T2 and ADC maps were manually characterized with the guidance of histological images.

Specifically, manual segmentation groups the regions on quantitative maps to one of the fol-

lowing category: background tissue culture media, adipose fat, fibrocellular, fibrous tissue,

necrotic core and media/extracellular matrix. Thrombus was excluded from the measure-

ments because only one instance was captured and also because of the variable T2 values
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for this tissue type. T2 and ADC values of pixels belonging to a specific tissue type on

these characterized maps were determined.

Based on these measured values, the means and standard deviations of these plaque

components were calculated and summarized in Table 3. The student t-test on T2 values

shows a small, but significant difference in all plaque constituents between fresh and pre-

served stages. The media/extracellular matrix showed the most significant changes in T2

after preservation.

Previous research by Toussiant et al. [93] evaluated the influence of vessel “freshness” on

MRI of carotid arteries with a different preservation procedures that involved freezing vessels

to -60◦C rather than formalin fixation. In that study, T2 values of major plaque components

(fibrous cap, media, lipid core and adventitia) were determined using a clinical scanner. T2

values were found to be similar between in-vivo and ex-vivo conditions. However, poor

resolution and questions about the accuracy of the dual-echo, T2 measurement sequence

caused potential errors. A study by Dalager-Pedersen et al. [20] evaluated the influence

of formalin preservation on the size, morphology and T2 property of carotid plaques at

room temperature. They found that changes introduced by formalin fixation were minimal

compared to those introduced by temperature change and decalcification process. Of all

plaque constituents, only media showed a significant, but small, change in T2 value as a

result of this process. The different results between their study and ours may be due to the

vessel prepare procedure difference. In that study, vessels were taken at autopsy and frozen

to -18◦C, so no scans on real “fresh” vessels were done.

It should be noted that similar to previous research [81], our results with T2 values

showed limited contrast between necrotic core and fibrous tissues. The reason for the

similarity in appearance may due to the similarity in composition between fibrous tissue

and “hard” necrotic core. Clinically, there are two kinds of necrotic cores: “soft” and

“hard”. The “soft” core usually contains semifluid extracellular lipid, while the “hard”

ones contain mainly collagen and tissue debris. Because of the patient population in the

current study, the majority of necrotic cores we captured are “hard” ones.

Our measured ADC values of fibrous tissue and media are similar to those of collagenous
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Table 3: T2 and ADC Values for Plaque Tissues of Fresh and Preserved Vessels

T2(ms) ADC(cm2/s)
Fresh Preserved Fresh Preserved

Media 49.7±9.7 58.0±12.5 1.9±0.8 2.3±1.1
Fibrous Tissue 28.8±8.7 32.9±7.8 1.3±0.8 1.5±0.7
Necrotic Core 30.6±7.0 34.9±5.1 0.9±0.6 1.10.4
Fibrocellular 54.7±10.7 62.4±10.1 2.2±0.8 1.9±0.5
Adipose Fat 43.2±6.3 40.7±6.7 0.24±0.05 0.25±0.06

caps measured by Toussiant et al. [95]. The ADC value of our adipose fat region is similar

to the ADC value of lipid core measured by previous studies [5, 95], however, our measured

ADC values in necrotic core regions show higher diffusivity. This can be explained by the

limited presence of excellular lipid in these necrotic cores.

4.7 Conclusions

In our study of explanted coronary arteries, efforts were made to simulate the in-vivo condi-

tions for explanted coronary vessels. This is critical since plaque characterization techniques

(both manual and automatic) reported in the literature rely heavily on techniques developed

using ex-vivo scans. Furthermore, there is still no report of in-vivo multicontrast coronary

plaque because of the technical difficulties. Therefore, the current study also facilitates the

evaluation of multicontrast MRI coronary plaque characterization in future clinical studies.

A subset of vessel samples (10 out of 15) were chosen to be imaged a second time after

preservation in order to access the impact of vessel viability on multicontrast MR results.

From the imaging results, the multicontrast MRI could be used to positively characterize

atherosclerotic plaques. This has already been verified by many previous studies. The

significance of our research is that we further demonstrated that coronary arteries under

the simulated in-vivo conditions give similar results as those obtained from preserved vessels.

This provides justification hypothesizing a possible clinical utility for MR coronary plaque

characterization, provided technical issues can be overcome.

When comparing the multicontrast MRI results of fresh and preserved vessels, it is
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observed that the contrasts of most plaque components (except fresh thrombus) are com-

parable on the multicontrast MR images between fresh and preserved vessels. The primary

inference of this observation is that it may be acceptable to adapt plaque characterization

techniques developed based on ex-vivo multicontrast MRI to in-vivo studies. The verifica-

tion of this claim is postponed to the next chapter, where automatic plaque characterization

is introduced. It should be noted that this claim is only true for plaque characterization al-

gorithms relying on comparative intensity of each plaque constituents. Under this situation,

the changes of tissues’ MR properties are not necessarily coupled with a change in plaque

characterization results. In contrast to this, retraining is needed for plaque characterization

techniques, which rely on absolute values such as intensity or T2 (e.g. PIEC technique

covered in the next chapter).

The quantitative MR properties including T2 and ADC for all typical plaque con-

stituents show small yet significant changes after preservation. In addition, slightly better

SNR was achieved for multicontrast MR images from preserved vessels. The implication of

these results suggests that the viability of plaque tissue components does affect the mul-

ticontrast MR results. Any plaque characterization technique relying on quantitative MR

properties may be subject to modifications when adapting from ex-vivo to in-vivo studies.
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CHAPTER V

AUTOMATIC PLAQUE CHARACTERIZATION EMPLOYING

MULTICONTRAST MRI

5.1 Introduction

The main purpose of multicontrast MRI is to characterize the composition and morphology

of atherosclerotic plaques in order to assess their vulnerability. As of now, plaque charac-

terization using multicontrast MRI data still relies heavily on manual segmentation. This

approach requires expertise and is time-consuming. In addition, the manual characteri-

zation results are subject to inter and intra-observer biases. One of the primary goals of

this thesis is to develop an automatic plaque characterization technique to mitigate these

difficulties.

Several researchers [2, 16, 17, 43, 61, 105] have already investigated the feasibility and

performance of a variety of automatic characterization techniques that can facilitate plaque

constituent differentiation. Following the methodology of manual characterization, the ma-

jority of these techniques characterize plaque constituents based on their comparative con-

trasts on MR images of each contrast mechanism (e.g., tissue appearing very hypo-intense on

proton, T1, T2 as well as diffusion weighted images should be calcification.). The compar-

ative contrasts are usually summarized as an intensity table, which is used to label plaque

components [2, 27, 30, 43, 83]. Despite the wide application of this approach, there are

several issues that hinder its application for automatic plaque characterization. Firstly, the

intensity table is imaging parameter dependent, and thus needs to be generated exclusively

for the chosen set of imaging parameters. Therefore, it is not surprising that the intensity

table differs among various studies. This increases the complexity of plaque characteriza-

tion, and more importantly, makes automatic plaque characterization inapplicable when

the table is not available. Secondly, unsupervised techniques [2, 43] require knowing all the

plaque constituents present prior to characterizing a specific multicontrast MR dataset to
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avoid over or under classification. Supervised techniques [16, 17, 61] do not require this prior

knowledge. However, repetitive training needed for supervised techniques makes them more

susceptible to changes in the imaging sequences and parameters. Lastly, unsupervised tech-

niques [2, 43] may encounter logic difficulties that hamper characterization. For example,

assuming there are three tissues present in plaques with their intensity A > B > C, if there

are only two tissues (X, Y ) present in a specific plaque, then X and Y can be any combi-

nation of either two of the three possible constituents (A,B, C). Because of this, additional

restrictions or user interactions have to be employed in cases of this ambiguity. Supervised

techniques [16, 17, 61] do not have this logic difficulty. However, even a small change in

imaging conditions may cause erroneous characterization results if the supervised classifier

was not retrained. This renders the supervised techniques extremely sensitive to imaging

conditions - parameters, scanning system, pulse sequences and even post-processing.

It is worthwhile to reemphasize the differences of classification, labeling and character-

ization in the current thesis (see also Chapter II). Classification is regarded as the step

that differentiates plaque components, while labeling is the post classification step that la-

bels clustered constituent groups. Characterization is a combination of classification and

labeling. For supervised techniques, labeling is woven into the classification step. For

unsupervised techniques, on the other hand, separate logic (e.g., comparative contrast) is

needed to label classified results. From the above general discussions about the pros and

cons of supervised and unsupervised plaque characterization techniques, it can be seen that

all the difficulties are related to the labeling of plaque components. Because supervised

characterization techniques have no separate labeling step, improvements regarding the

characterization difficulties could be more easily made to unsupervised techniques.

In the current thesis, efforts were dedicated to combine a clustering based classification

technique with a labeling step that is independent of imaging parameters to resolve the

issues associated with the existing automatic plaque characterization techniques. The or-

ganization of this chapter is as follows: in the first half, unsupervised clustering techniques

are introduced to classify/segment plaque constituents; in the second half, labeling tech-

niques are described and combined with classification to yield characterization techniques.
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The characterization techniques were applied to both the acquired multicontrast MR data

described in the previous chapter and simulated data sets for evaluation.

5.2 Plaque Component Classification/Segmentation

Tissue classification/segmentation is a fundamental task in image processing and is involved

in many clinical applications [8]. Despite the large number of segmentation methods avail-

able, two major categories can be identified: edge-based and intensity-based segmentation.

Intensity-based segmentation algorithms group pixels based on intensity similarity and are

more heavily used in classification work than edge-based segmentation. Since multicontrast

plaque characterization involves classification based on multiple images, intensity-based

segmentation techniques are more easily applicable, and thus selected for this purpose.

5.2.1 Fuzzy C-Means Classification

As an intensity-based classification/segmentation technique, Fuzzy C-Means (FCM) clus-

tering [7] has been applied widely in MR tissue classification tasks [40, 60, 71]. A FCM

algorithm classifies the image purely based on intensity. Each pixel is assigned a mem-

bership function, which resembles the percentage of this pixel that belongs to each class.

Defuzzification of the membership matrix by picking up the highest percentage class as the

class of this pixel generates the final classification result. For instance, pixel i with highest

similarity to centroid j will have a greater value of Mi,j than Mi,k (k can be any class other

than j), this ensures the classification correctness using a maximum a posteriori (MAP)

like defuzzification scheme.

Specifically, the FCM classification is realized by minimizing the objective function

formulated as Equation (20). Here, Mi,j is the membership function of pixel i to be class

j with fuzzification factor m, xi is the intensity of pixel i, wj is the centroid for class j, c is

the total class number, and n is the total pixel number.

JFCM =
c∑

j=1

n∑
i=1

Mm
i,j‖xi − wj‖2 (20)

48



Usually, typical pixel intensities for all classes are manually selected as the initial cen-

troids for the objective function. The objective function is then numerically resolved through

a gradient descent minimization search with an additional restriction that the summation

of all the memberships for a specific pixel.

Based on gradient descent minimization search, the membership function could be cal-

culated with Equation (21). In this equation, the second term on the left hand side is the

Lagrange multiplier that constrains the membership function summation of any pixel in the

image domain, Ω, equals to one.

∂JFCM

∂Mi,j
+

∑
i∈Ω

λi(1−
c∑

j=1

Mi,j) = 0 (21)

Partial differentiating Equation (21), the membership function is derived as Equation

(22). With the constraint that the summation of membership function equals to 1 (Equation

(23)), λi can be derived as Equation (24). Based on Equations (22) and (24), the final

solution for pixel membership can be derived (Equation (25)).

Mi,j = [
m‖xi − wj‖2

λi
]

1
1−m (22)

c∑
j=1

Mi,j = 1 (23)

λi = (m
c∑

j=1

(‖xi − wj‖
2

1−m ))1−m (24)

Mi,j =
‖xi − wj‖

2
1−m

c∑
k=1

(‖xi − wk‖)
2

1−m

(25)

In a similar fashion, the centroid of the FCM objective function is subject to Equation

(26) and the solution is derived as Equation (27).

∂JFCM

∂wj
= 0 (26)

49



wj =

n∑
i=1

Mm
i,jxi

n∑
i=1

Mm
i,j

(27)

With the above mathematical derivation, the numerical scheme in minimizing the FCM

objective function can be summarized as follows.

1. Manually select a set of initial centroids w to start the FCM minimization.

2. Employ Equation (25) to calculate the membership function.

3. Update class centroids with Equation (27).

4. Evaluate the convergence of the objective function by checking the maximum change

(absolute value) of the membership functions. If it is bigger than a preset threshold

ε, return to step 2 otherwise stop the minimization.

5. Assign the class type of each pixel to its highest membership.

Since the total image pixel number is limited, the FCM objective function ensures the

existence of a global minimum (i.e., there exists a single configuration where the energy

function is minimized). However, in numerical form, FCM may converge to a non-optimized

local minimum for its seed-dependent property. To make sure that this undesired property

of FCM has minimal effects on classification results, a reasonably selected initial centroid

set is usually needed.

5.2.2 Spatially Penalized Fuzzy C-Means Classification

From the previous section, it can be seen that only intensity information is utilized during

the FCM classification. The lack of spatial information makes this technique highly sensitive

to noise. To suppress the noise, pre-classification smoothing and post-classification majority

filtering could be applied to reduce the misclassification error. An alternative approach of

including spatial penalty terms in the objective function were shown to mitigate this problem

more efficiently while preserving small features in the images [58, 72].

50



In the current research, a spatially penalized FCM (SPFCM) technique [72] was adapted

and modified for the purpose of plaque classification. In the SPFCM technique, an addi-

tional spatial constraint term is introduced to FCM objective function to yield Equation

(28).

JSPFCM =
c∑

j=1

n∑
i=1

Mm
i,j‖xi − wj‖2 + α

c∑
j=1

n∑
i=1

Mm
i,j

∑
t=1...c,t6=j

∑
l∈Neighbor(i)

Mm
l,t (28)

In this equation, the first term of the function is the traditional FCM objective function,

which groups the pixels relying only on their intensity similarity. The second term, restricted

by spatial relationships, reduces the membership function Mi,j when the neighboring pixels

of pixel i have a large sum of memberships in classes other than class j. This configuration

makes the FCM more noise resistive, though there is a tradeoff between noise suppression

and small feature preservation.

Following similar minimization approach as FCM algorithm, the updating scheme for

membership function is derived as equations (29). The centroid updating function stays

the same as Equation (27).

Mi,j =

(‖xi − wj‖2 + α
∑

t=1...c,t6=j

∑
l∈Neighbor(i)

Mm
l,t)

1
1−m

c∑
k=1

(‖xi − wk‖2 + α
∑

t=1...c,t6=k

∑
l∈Neighbor(i)

Mm
l,t)

1
1−m

(29)

Because of the inclusion of spatial constraint in the objective function, SPFCM gives

much better classification results than FCM in the presence of noise. An example is shown

to illustrate this point. Figure 14(A) shows a synthetic image with 4 intensities symbolizing

4 different tissues. Gaussian noise was added to the synthetic image to generate a corrupted

image Figure 14(B). The classification results of FCM and SPFCM are shown in Figures

14(C) and (D), respectively. From the results, SPFCM shows apparent advantages over

FCM for its noise resistance.

In applying SPFCM classification to multiple slice MR data of plaques, the three dimen-

sional version of this algorithm (3D-SPFCM) incorporating both in-plane and longitudinal
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Figure 14: Comparison of the SPFCM and FCM results of a noise corrupted synthetic
image. (A) a synthetic image with 4 intensities symbolizing 4 different tissues, (B) Gaussian
noise corrupted version of (A), (C) and (D) are the FCM and SPFCM classification results,
respectively.

Figure 15: schematic drawing illustrating multicontrast data.
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Figure 16: Example shows the superiority of regularized SPFCM (rSPFCM) to SPFCM
in avoiding local minimum. Direct RGB color composition (CC) of DWI, T1W and T2W
are shown for comparison.

spatial constraints can be used. 3D-SPFCM follows the same procedure as SPFCM but

change the Neighborhood(i) from 2D to 3D. In applying the 3D-SPFCM, smaller weighting

was assigned to spatial constraint on the longitudinal direction than in-plane in compen-

sating for the non-isotropic size of the MR image voxels.

The MR images were intentionally over classified first to avoid any merging of different

tissues. Then the resulting n centroids of SPFCM algorithm were evaluated to inspect

whether they are well separated. If the Euclidian distance between any two centroids is

less than a preset threshold, the SPFCM algorithm will be recalculated with (n− 1) initial

centroids.

When SPFCM is applied to multicontrast MR images, the pixel intensity and centroid

should be replaced by vectors, i.e. xi = [xPD(i), xT1(i), , xT2(i)]T , wj = [wPD(j), wT1(j), , wT2(j)]T .

A schematic drawing shown in Figure 15 illustrates this idea.

For multicontrast MR data, the seed dependent problem worsened because of the in-

creased data dimensionality. To ameliorate the local minimum problem prevalent in mul-

ticontrast classification, a regularization step can be employed. Regularized SPFCM is
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conducted by first classifying the MR images of each contrast separately. And then, each of

these images is regularized by averaging the intensities of the pixels that have been labeled

as the same class in the previous classification results. Lastly, the regularized images are fed

to the SPFCM objective function to generate the final classification result. In Figure 16,

a sample multicontrast dataset with diffusion, T1 and T2 weighted images is shown. The

SPFCM and regularized SPFCM classification results reveals the improved performance at-

tribute to regularization. The flow chart of the regularized 3D-SPFCM algorithm is shown

in Figure 17.

5.2.3 Map Guided Intensity Correction Fuzzy C-Means

Unfortunately, noise is not the only source of error in MR image classification. A very

common image quality problem for MRI is caused by intensity variations. Intensity varia-

tions in MR images can arise from stationary (B0) and/or excitatory (B1) magnetization

inhomogeneity, partial volume effect (PVE), gibbs ringing artifact, ghosting artifact from

motion, etc. Some of these signal non-uniformities are hardware related and are inevitable

during the acquisition process. A thorough review of intensity variations in MR images can

be found in reference [18].

Generally, these intensity variations degrade the performance of FCM and other intensity

based segmentation algorithms, and thus lead to erroneous results. In order to reduce the

influence from intensity variations, either modeling of the corruption process, or separating

out the variations based on their specific properties is needed.

As shown previously, noise, a special kind of intensity variation, can be successfully

suppressed by the SPFCM. The correction of other intensity variations, however, appears to

be more difficult. To correct the corrupted images with no additional information available,

an assumption needing to be met is that the corrupted images have more information than

uncorrupted ones.

Numerous inhomogeneity correction schemes have been reported in literature [4, 12, 21,

45, 59, 64, 73, 84, 90, 92, 103, 104, 111]. One of the most investigated techniques is applying

the field map estimated from reference scans to correct the inhomogeneities [4, 84, 104]. The
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Figure 17: Flow chart of the regularized SPFCM algorithm.

55



drawback of this approach lies in the fact that reference scans are needed for all the imaging

parameter sets. Moreover, the field inhomogeneity pattern differs, in general, between the

reference and subject scans because of their coil loading difference. Another commonly used

technique in practice is homomorphic filtering [12, 45]. This approach, despite comparative

ease of use, was reported to worsen the classification in some cases [12]. Several authors

proposed a polynomial fitting based inhomogeneity correction algorithm [64, 92]. Wells

et al. [103] reported an adaptive classification algorithm based on a combination of EM

algorithm and iterative homomorphic filtering, which corrects inhomogeneity better than

its precursors. The adaptive fuzzy c-means algorithm proposed by Pham and Prince [73],

which models the inhomogeneity field as a slowly varying field, reduces the inhomogeneity

effect on fuzzy c-means clustering. This method gives promising results, but the necessity

of solving an elliptic PDE greatly increases the processing time. In addition, small, local

intensity variations appear abruptly in the images, contradicting the assumption that in-

homogeneity is changing slowly. More importantly, this technique does not have a unique

solution and may converge to non-optimal solutions. An alternative approach in correcting

inhomogeneity in FCM, proposed by Zhu and Jiang [111], alleviates the intensity variation

problem by doing segmentation/classification in unoverlapped sub-regions in the images

and fusing the results based on the intensity deviation of each sub-region. In this method,

estimation of the weighting factor when fusing the sub-regions is still an unsolved issue.

In this thesis, we developed a novel MAp Guided Intensity Correction (MAGIC) FCM

algorithm which shows promise in dealing with the intensity variation problem in FCM

clustering. The idea of this technique is based on constructing an adaptive field that re-

flects the intensity variations in MR images with intensity non-uniformity. This estimated

intensity variation field is then subtracted from the corrupted image to recover the original

image and facilitate the classification.

5.2.3.1 Intensity Variation Field Modeling

It has been shown by previous research that the inhomogeneity in MR images can be mod-

eled as a slowly varying, multiplicative field. Since the multiplicative field can be changed
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to additive by simply taking a logarithm transformation, the following discussion first as-

sumes the additive field, and then extends the method to a multiplicative field assumption

on the corrupted image. Furthermore, we model this field as comprised of a local intensity

variation part and a global intensity variation (inhomogeneity) part.

The global intensity variation mainly refers to the stationary and radio frequency (RF)

magnetic field inhomogeneity that corrupts the whole image and is spatially variant. On the

other hand, the local intensity variation reflects the more unpredictable intensity corruption

that is only locally dependent, including noise, PVE, ghosting etc.

Following assumptions of previous research, the MR images corrupted by intensity vari-

ations are assumed as follows:

Icorrupted = Ioriginal ·G + L (30)

, where Icorrupted symbolizes the corrupted image, G is the global inhomogeneity, Ioriginal

is the original image and L symbolizes the local intensity variations. This model can be

reformulated as

Icorrupted = (Ioriginal + L′) ·G (31)

Following a simple logarithm transformation, the equation is then expressed to be

ln Icorrupted = ln(Ioriginal + L′) + lnG (32)

To recover the original image, the global inhomogeneity can be removed first, and then

the result can be exponentially transformed so that the local intensity variations can be

removed in a similar fashion. Therefore, both the global and local intensity variation fields

can be removed in an additive means. An additive global intensity variation cases is shown

in Figure 18 to symbolize the relationship. Multiplicative case can be adapted in a similar

manner following previous discussions.

Based on this corrupted model, a process that counteracts the corruption is proposed

in the present study to include an intensity variation adaptation in the intensity-based

classification techniques in order to generate correct results. Specifically, we include an

intensity adaptation map that is proportional to the intensity variations yet has opposite

signs in the classification process to counteract the corruption process.
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Figure 18: Relationship between original image, corrupted image, local intensity variation
and global intensity variation. The difference between corrupted image (A) and original
image (B) can be viewed as a global intensity variation (C) plus a local intensity variation
field (D).

5.2.3.2 MAGIC-FCM Objective Function

Based on the adaptive field modeling, we introduced additional terms to the basic form of

SPFCM classification to achieve the goal of correcting intensity variations. Specifically, the

following objective function was proposed to be minimized:

JMAGIC−FCM =
c∑

j=1

n∑
i=1

Mm
i,j‖xi − wj − vi‖2 + α

c∑
j=1

n∑
i=1

Mm
i,j

∑
t=1...c,t6=j

∑
l∈Neighbor(i)

Mm
l,t + η

n∑
i=1

‖∇xi −∇vi‖2 + λ
n∑

i=1

‖vi‖2 + γ
n∑

i=1

‖∆vi‖2 (33)

Here, vi is the intensity adaptive factor for pixel i. Adaptive factors of all pixels com-

prise an adaptive surface that counteracts the intensity variation. η is a constant restricts

adaptive surface, λ is the dwelling force term that settles the adaptive surface, and γ assigns

the weighting of the smoothness in the adaptive surface.
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The first term of the function is a modified version of the traditional FCM objective

function, which groups the pixels according to their intensity similarity with adaptation to

intensity variation. In this term, the adaptive factor vi helps to counteract the intensity

deviation from the expected value. The second term, introduced in the above section, makes

the FCM more noise resistive. The third term constricts the gradients of the adaptive

surface (∇vi) to be similar to the treated gradient field of the original image (∇xi). With

this restriction, the desired adaptive field can be constructed. In the application of intensity

variation removal, the expected adaptive field is low frequency dominated which means only

small gradients in the original image should be reflected in the adaptive field. To achieve

this goal, the gradient field of the original image can be treated in multiple ways that will

be discussed later. The adaptive surface, restricted by term three, however, does not have a

mathematically unique solution. Because of this, the fourth term is added so that an optimal

solution can be found. Another more important purpose this term serves is to differentiate

between the local and global intensity variations. The last term in the objective function

minimizes the Laplacian of the adaptive field. This term serves the purpose of making the

adaptive field piecewise continuous.

In practice, an eight-directional gradient is used in the third term. It is defined at each

pixel as the summation of the intensity differences between the current pixel and each of

its eight neighborhood pixels. Theoretically, this term restricts the contrast of the adaptive

field to be the same as the image. This can be understood by assuming an arbitrary pixel x

in the original image and its corresponding pixel x′ in the adaptive surface. Without losing

generality, the following relationship is assumed: x = x′ + c, where c is a constant. Since

the objective function restricts the gradient from pixel x to its eight neighborhood Ω same

as those of pixel x′, Equation (34) holds.

ix∈Ω(x) = i′x′∈Ω(x) + c (34)

Following this analysis, the adaptive field equals to the original image plus a constant

value. By treating the gradient filed of the original image, the abrupt change in gradient,

mainly caused by edge, is not reflected in the adaptive surface. A one-dimensional example
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Figure 19: One dimensional example illustrating MAGIC intensity variation correction.
(A) original image, (B) intensity variation field, (C) corrupted image by adding (B) to (A),
(D) two dimensional gradient field of (C), (E) thresholded gradient field and (F) estimated
gradient field using term 3 of MAGIC-FCM.

is shown in Figure 19 to help understand this. Here, we assume a one dimensional corrupted

image (C) resulting from the summation of (A) and (B); (D) is the gradient field of (C),

which is defined by vi = (vi−vi−1)+(vi−vi+1); (E) is the thresholded version of (D); and (F)

is the estimated intensity variation based on (E) using the third term in the MAGIC-FCM

objective function.

This restriction, however, does not yield a unique solution, since constant c can be any

real number. The dwelling term helps to settle the surface to an optimal solution, which

makes the mean value of the adaptive field, theoretically, equal to zero.

In the same fashion, the second order derivative in the fifth term is defined as the second

order eight-directional derivative. Based on this, Equation (33) is reformulated as Equation

(35).

JMAGIC−FCM =
c∑

j=1

n∑
i=1

Mm
i,j‖xi − wj − vi‖2 + α

c∑
j=1

n∑
i=1

Mm
i,j

∑
t=1...c,t6=j

∑
l∈Neighbor(i)

Mm
l,t+
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η

n∑
i=1

∑
k∈Ω

‖(xi − xk)− (vi − vk)‖2 + λ

n∑
i=1

‖vi‖2 +
γ

9
trace(‖A ∗ Vi‖2) (35)

In this equation, Vi is the matrix form of the adaptive surface; and matrix A is calculated

as

A =



−0.125 −0.25 −0.375 −0.25 −0.125

−0.25 1.75 1.5 1.75 −0.25

−0.375 1.5 −9 1.5 −0.375

−0.25 1.75 1.5 1.75 −0.25

−0.125 −0.25 −0.375 −0.25 −0.125


(36)

The combination of the last three terms, namely MAGIC terms, has basically two con-

figurations. On one hand, when the ratio of λ to η is comparatively large and γ is zero,

this MAGIC part reflects local intensity variations yet penalizes global intensity inhomo-

geneity and primary image information. This is because local intensity variations have a

higher cumulative sum of the L2 norm (the fourth term of MAGIC-FCM) than those of

the 8-directional gradient between corrupted image and adaptive surface. As a result, the

adaptive surface only reflects the local intensity variations. On the other hand, when the

ratio of λ to η is small and a weighting is assigned to smoothness factor γ, the adaptive

surface is able to reflect both global and local intensity variations. In such a case, nearly no

information is left when subtracting this adaptive field from the corrupted image. There-

fore, treatment is needed for the 8-directional gradient field of the corrupt image in order

to neglect the edge in the adaptive surface. A simple way of treating the gradient field is to

suppress (threshold) large gradients so that the edge is not reflected. Alternatively, some

advanced edge detection algorithm can be used to suppress the gradient only at the detected

edge regions. A detailed description about gradient field treatment will be discussed later

in the following sessions.

Similar to FCM/SPFCM minimization, by taking the partial derivative of the MAGIC-

FCM objective function with respect to wj , vi and Mi,j under the constraint that the

membership of each pixel is summed to one, we can find a numerical scheme for updating

the centroids, adaptive surface and the membership function. The updating process can be

terminated at specific convergence criteria.
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5.2.3.3 Numeric Derivation

Minimization of the objective function needs evaluation of the membership function, cen-

troids and adaptive field following a gradient descent procedure. Since the total pixel

number is limited, the objective function ensures the existence of a global minimum. Sim-

ilar to FCM/SPFCM, the MAGIC-FCM may converge to a non-optimized local minimum

for its seed-dependent property.

Similar to Equation (21), the membership function can be derived with the following

PDE.
∂JMAGIC−FCM

∂Mi,j
+

∑
i∈Ω

λi(1−
c∑

j=1

Mi,j) = 0 (37)

Solving Equation (37), the numerical updating scheme for the membership function is

found as follows.

Mi,j =

(‖xi − wj − vi‖2 + α
∑

t=1...c,t6=j

∑
l∈Neighbor(i)

Mm
l,t)

1
1−m

c∑
k=1

(‖xi − wk − vi‖2 + α
∑

t=1...c,t6=k

∑
l∈Neighbor(i)

Mm
l,t)

1
1−m

(38)

The centroid is solved by solving the PDE of Equation (39) and is shown in Equation

(40).

∂JMAGIC−FCM

∂wj
= 0 (39)

wj =

n∑
i=1

Mm
i,j(xi − vi)

n∑
i=1

Mm
i,j

(40)

The last parameter that needs to be updated is the adaptive surface. This is done by

taking the partial derivative of JMAGIC−FCM with respect to vi.

∂JMAGIC−FCM

∂vi
= 0 (41)

The solution is shown in Equation (42).
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vi =

η
∑
k∈ω

(vk + xi − xk) + γ
∑
t∈Ψ

(btvt) +
c∑

j=1

Mm
i,j(xi − wi)

η + 8λ + 9γ +
c∑

j=1

Mm
i,j

(42)

Here, Ψ symbolizes the 5 by 5 pixel matrix around pixel i, and b is the weighting factor.

The weights for these neighboring pixels are the same as those specified in Equation (36),

with zero weighting of the center pixel. As mentioned above, a global minimum exists for

the objective function, and the numerical scheme provided here ensures convergence.

5.2.3.4 MAGIC-FCM Algorithm

A major difficulty in minimizing the proposed MAGIC-FCM objective function is the ad-

justment of parameters. The complicated form of the objective function also worsens the

local minimum problem. In practice, all these can be circumvented by fulfilling the ob-

jective function in two steps, which increases the flexibility in applying the MAGIC-FCM

algorithm.

Reformulating the objective function (33), the MAGIC-FCM function can be broken

down into two parts:

JMAGIC−FCM = JMAGIC + JSPFCM (43)

, where JSPFCM is the same as described previously and JMAGIC equals

JMAGIC = η

n∑
i=1

‖∇xi −∇vi‖2 + λ
n∑

i=1

‖vi‖2 + γ
n∑

i=1

‖∆vi‖2 (44)

Specifically, MAGIC-FCM is more likely to achieve ideal classification if JMAGIC and

JSPFCM are minimized sequentially. In this sense, the first function works as a preprocess-

ing step for intensity variation correction and the second step becomes the fuzzy c-means

algorithm with spatial penalization. The separation, at the same time, enables the appli-

cation of MAGIC algorithm in other image processing tasks as well. The two objective

functions are minimized in the same fashion as Equation (33).

The detailed SPFCM algorithm can be referred to previous sections. For MAGIC, since

global and local intensity variations are manifested differently in the corrupted image, they
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need to be removed separately. First, we will describe how to use the MAGIC algorithm

to remove the global intensity variations. As already mentioned, gradient fields need to be

treated in order to keep the edge information in this configuration.

The easiest way to treat the gradient field to make it only reflected global inhomogene-

ity is to threshold the eight-directional gradient field. The thresholding, for an additive

inhomogeneity field, is performed in the manner that the gradients in all directions that are

greater than the threshold are replaced by zeros. Gradients that have been replaced with

zeros, it is given smaller weighting than those below the threshold. In our application, only

one tenth of the weighting for untouched gradients were assigned to the replaced zeros.

When the inhomogeneity is multiplicative, the logarithm transformation can be per-

formed on the corrupted image to make it additive. Since this is a non-linear transforma-

tion, the thresholding has to be non-linear as well. Different from linear thresholding, the

nonlinear thresholding depends on the intensity of the pixel. For a pixel with intensity i

in the corrupted image, if the linear threshold is set to be th, the nonlinear thresholding

will have a lower threshold of ln(i− th)− ln(i) and an upper threshold of ln(i + th)− ln(i).

Despite the theoretical soundness of such an approach, it may introduce additional difficul-

ties to the proposed algorithm because the gradient field resulting from this process makes

the gradient field at lower intensity be given more addresses than those at high intensity.

This can be easily understood by a trivial example of comparing a = ln(2) − ln(1) and

b = ln(255) − ln(254). Clearly, a = 0.6931 >> b = 0.0039. As a result, numerical solution

becomes highly unsatisfactory.

To overcome this difficulty, an alternative approach was proposed for the multiplicative

field case. In the first step, the global intensity variation field is estimated purely based on

an adaptive field assumption. Then, the multiplicative version of this field is calculated by

dividing the corrupted image by the corrected image. In this multiplicative field, there is a

constant displacement ζ at the boundaries between different tissue types. These discontinu-

ities, corresponding to the points where the gradients have been set to zero in the first step,

can be removed following the same procedure in step one by replacing the gradient field at

these discontinuities with zero. This ensures that the constant offsets in the multiplicative
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field are removed.

After the MAGIC process, only contrast lower than the threshold is reflected in the

adaptive surface. To avoid the discontinuity of the adaptive surface, a weighting is assigned

to the smoothness (the third term in JMAGIC) so that the adaptive surface is piecewise

continuous.

Another approach to preserve the edge and small features in the global variation removal

process can be done with the aid of an edge detection algorithm such as the canny edge

detector [24]. This kind of optimized edge detector best separates edges from noise. We can

just null the gradients at edge locations identified by this kind of edge detector. Detailed

treatment can be realized in 3 steps:

1. Calculate the edgemap using the canny edge detector.

2. Dilate the edgemap by one to ensure the edge region is covered.

3. Calculate from this edgemap where in all 8-directional gradient fields the gradient

should set to zero. This is done by taking the expanded edgemap as an image and

calculating its 8-directional field. The identified non-zero points in the gradient field

along with those in the edgemap are the calculated edge locations in the original

image.

Although a canny edge detector is used here, other edge detectors can be applied in the

same spirit. It should be noted that this process may not generate satisfactory results for

images with too many boundaries because of the information loss resulting from a dilated

edgemap.

In removing the local intensity variations, a high η value is assigned to the MAGIC equa-

tion to penalize the image information and global inhomogeneity. Under this configuration,

it is not necessary to treat the gradient field. The previously mentioned edge detector-based

nulling scheme, however, can be combined to the local intensity variation removal process

to better keep the edges and small features while removing local intensity variations.

After the above theoretical analysis, we can derive the updating scheme of Equation
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(44) based on a gradient descend technique, which yields:

vi =

η
∑
k∈ω

(vk + xi − xk) + γ
∑
t∈Ψ

(btvt)

η + 8λ + 9γ
(45)

Iterating Equation (45), an adaptive surface with intensity variation estimation can be

constructed.

The detailed MAGIC-FCM algorithm to remove both local and global intensity vari-

ations is described as follows. Although both global and local variations removals were

included in the algorithm, they can be performed separately.

1. Initialize parameters, centroids, membership function and adaptive surface.

2. Set λ to be zero, η, γ to be specified values, and then iterate Equation (45) on the

corrupted image with thresholded/treated gradient field until convergence. Although

there is no unique solution theoretically for the objective function, numerically it does

yield the closest optimal solution to the initial adaptive surface. This step estimates

the global inhomogeneity. For multiplicative intensity variation fields, the multiplica-

tive field is estimated by dividing corrupted image to corrupted image minus estimated

additive field. The discontinuities in this multiplicative field are removed by taking

the multiplicative back to the MAGIC function with proper settings of parameters and

treated gradient field, which is simply retrieved by nulling the gradients at locations

that were set to zero during the additive field estimation.

3. Subtract/divide (additive/multiplicative field assumption) the global adaptive surface

from the corrupted image and estimate the local intensity variation using Equation

(45). The field may be treated with an edge detect algorithm such as canny; γ is set

to be zero; and a high ratio of λ to η is chosen to reflect the local intensity variation

but suppress small features and edges in the adaptive surface.

4. Remove the global and local intensity variation adaptive surfaces from the corrupted

image to recovered the original image.

5. Perform SPFCM as described previously.
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6. Stop the algorithm when the maximum change in the membership functions of all

pixels is smaller than the preset stopping factor e.

Since only the ratio of η to λ and γ affects the MAGIC result, η can be set to be 1 all

the time. The value λ, when chosen to be zero in estimating the global inhomogeneity, has

a slow convergence rate. To speed up processing, the algorithm can be applied to the down-

sampled version of the corrupted image. The final global adaptive surface is then acquired

by up-sampling the estimated result back to original size. This treatment increases the

processing efficacy and seldom degrades the performance of the MAGIC algorithm since

the global intensity variation is a slowly changing field with no abrupt changes.

In local adaptive surface estimation, the big value of λ accelerates the convergence, so

it completes in less than 20 steps in most cases.

5.2.3.5 Parameter Selection and Algorithm Initiation

In our application of the MAGIC-FCM algorithm, all the parameters were fixed. The

fuzzification parameter m was set to 2. The selection of α, according to reference [72],

can be evaluated based on a cross-validation scheme. Since MAGIC itself helps suppress

noise, which is included in the local intensity variations a small value 10 (it is usually

set to be around 200) was set for α. η was set to be 1 all the time; λ was set to be 5

for local intensity correction with edge nulling and 0 for global intensity correction; the

smooth weighting γ was set to be 0.01 for additive field estimation. For multiplicative

estimation, the smoothness factor was set to zero in the additive field estimation and 0.01

when retrieving the multiplicative field based on this additive field result.

The stopping criteria for MAGIC is fulfilled when the overall change of the adaptive

surface is less than a preset threshold; while the stopping criteria for SPFCM is fulfilled

when the maximum change of membership function is less than a specific value. In our

application, the stopping factors chosen were 1 for local and additive global for the MAGIC

step and 0.05 for the SPFCM step.

Initial selection of the adaptive surface is vital in the accuracy and efficacy of the

MAGIC-FCM algorithm. For global intensity variations, the starting guess should have
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Figure 20: Application of MAGIC algorithm on sinusoidal inhomogeneity corrupted
checker board image. (A) Corrupted image (B) FCM classified result (C) Estimated global
intensity variation field using MAGIC (D) Recovered image.

similar contrast as the corrupted image. However, since the numerical solution of the adap-

tive surface has zero mean, the initial adaptive surface was chosen to be the corrupted image

minus its mean value. For local intensity variations, the initial adaptive surface was chosen

to be zero.

Initial centroids were chosen manually and initial membership estimation was calculated

based on the following equation:

Mi,j =
( 1

d2
i,j

)1/m−1

c∑
j=1

(
1

d2
i,j

)1/m−1

(46)

, where di,j is the Euclidean distance.

5.2.3.6 Performance of MAGIC-FCM

The performance of the MAGIC-FCM algorithm was first evaluated on a checker board

image corrupted by sinusoidal intensity variations (Fig. 20). The images represent two

68



Figure 21: MAGIC estimation of the inhomogeneity field of the corrupted image shown
in Figure 20.

tissue classes with different intensities. The two tissues, originally separated perfectly were

corrupted by additive sinusoidal field. This was done by an adding specific sinusoidal fields

to the original images. There are no local intensity variations in the images, so only step

2 in the MAGIC-FCM algorithm was used to remove the global inhomogeneity. These two

images were constructed so that it is difficult for a homomorphic filter to correct the inho-

mogeneity. SPFCM classification is shown in Figure 20(B); (C) shows the estimated global

intensity variation by the MAGIC procedure and the final MAGIC recovered image is shown

in Figure 20(D). It is can be readily appreciated that the inhomogeneity field is removed

completely by subtracting (C) from (A). The SPFCM classification on the recovered image

(D) then becomes trivial.

The estimation of the inhomogeneity field in this case took less than 50 iterations. The

estimation process of the inhomogeneity field is illustrated in Figure 21.

MAGIC-FCM algorithm was tested on another synthetic corrupted image shown in

Figure 22(A). The SPFCM result is shown in (B). The estimated adaptive surface and

classified result by MAGIC-FCM are shown in (C) and (D), respectively. In Figure 22(C),

the sinusoidal field running from head to bottom can be readily inspected. From these
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Figure 22: Comparison of MAGIC-FCM and SPFCM classification results on sinusoidal
inhomogeneity corrupted image. (A) Corrupted image (B) SPFCM classified result (C)
Estimated global intensity variation field using MAGIC (D) Classified result from MAGIC-
FCM.

two ideal examples with different patterns of intensity variations, we showed the ability

of the MAGIC procedure in restoring the original images and then facilitating SPFCM

classification.

To quantitatively evaluate the performance of MAGIC-FCM on MR images, the ground

truth of the corrupted image has to be known. This can be facilitated by the brain MRIs

obtained from simulated brain database at the McConnell Brain Imaging Center of the Mon-

treal Neurological Institute, McGill University [50]. The advantage of using this database

is that the prototypical model of the simulated brain is known and the inhomogeneity level

and noise level, acquired from real MR images, are adjustable.

The noise in the simulated images has Rayleigh statistics in the background and Rician
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statistics in the signal regions. Noise level is defined by percent ratio of the standard devia-

tion of the white Gaussian noise versus the signal for a reference tissue. The inhomogeneity

field is modeled as multiplicative, and its level is defined as the ratio of variation range to

one, e.g. 40% inhomogeneity means the pixel intensity can be multiplied by a factor of 0.8

to 1.2.

First, we test MAGIC-FCM on a degraded T1 weighted image (60% inhomogeneity, 3%

noise) for both additive and multiplicative assumptions shown in Figure 23.

It is clearly visualized that the intensity variations existing in the corrupted image are

removed by the MAGIC correction based on both of these two assumptions. This can

be also seen from the histograms shown. Before MAGIC correction, the white matter

and gray matter form a broad peak in the histogram. This peak splits into two after the

MAGIC correction, which facilitates the classification. The misclassification region pointed

by the white arrow shown in Figure 23(F) is corrected in both multiplicative (G) and

additive (H) MAGIC-FCM. However, in the additive field assumption, additional intensity

error was introduced and some part of the CSF region was classified as the background

(pointed by dark arrow in Fig. 23(H)). This is caused by the constant offsets between tissue

boundaries. Since in the simulated brain images, the inhomogeneities were introduced by

the multiplicative model, this misclassification is expected.

The MAGIC step, comparing with most previous inhomogeneity correction methods,

has the advantage of being able to suppress local intensity variations including noise. In

the following example shown in Figure 24, we performed MAGIC along with two successful

and widely used inhomogeneity correction methods N3 [85] and Entropy Minimization on a

simulated brain image corrupted by 60% inhomogeneity and 10% noise. All these corrected

images were then SPFCM classified and compared.

Since MAGIC corrects both global and local (here it is only noise) intensity variations,

it yields better classification results than the classification results of the image after N3 and

Entropy Minimization correction, visually. Comparable performance was acquired for N3

correction when an edge-preserving anisotropic filtering was applied to the N3 corrected

result prior to the classification.
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Figure 23: MAGIC-FCM on T1 weighted simulated brain image based on both multi-
plicative and additive inhomogeneity assumptions. (A) Corrupted, (B) MAGIC corrected
based on multiplicative inhomogeneity assumption, and (C) MAGIC corrected image based
on additive inhomogeneity assumption images with histogram. (D) and (E) show the esti-
mated multiplicative and additive adaptive surfaces, respectively. (F), (G) and (H) show
the classification results from the FCM, MAGIC-FCM (multiplicative) and MAGIC-FCM
(additive) algorithms, respectively. Arrows show misclassification region. (I) shows the
noise and inhomogeneity free phantom model.
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Figure 24: Comparison of MAGIC-FCM with N3 and Entropy Minimization algorithms
in intensity variation correction on T1 weighted simulated brain image. (A ) Corrupted
and (B) Uncorrupted images; (C) MAGIC corrected, (D) N3 corrected and (E) Entropy
Minimization corrected images. (F), (G) and (H) are SPFCM results of (C), (D) and
(E), respectively. (D) and (E) were then anisotropically filtered to denoise, classified using
SPFCM and shown in (I) and (J), respectively.
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Table 4: Misclassification Rate of White Matter for SPFCM and MAGIC-FCM

Inhomogeneity Noise Misclassification Rate
SPFCM MAGIC-FCM

20% 1% 2.7 1.8
3% 4.2 3.2
5% 5.9 5.7
7% 9.5 7.4
9% 15.7 8.4

40% 1% 5.4 2.1
3% 6.5 4.0
5% 8.5 6.5
7% 10.6 7.8
9% 16.5 8.7

In order to systematically evaluate the MAGIC-FCM under various conditions, the

algorithm was tested on MR images with different corruption levels. In this example, we

chose a simulated MR brain image corrupted by 20%-40% global intensity variation and

1%-9% noise (Fig. 25).

Misclassification rate, an evaluating criterion, is defined as the ratio of misclassified

pixels to total number of pixels of this class. It is formulated in Equation (47).

e(i) =
fp + fn

n
(47)

Here, e(i) is the misclassification rate of tissue i; fp is the false positive responses (pixel

belongs to tissue i but classified as other tissues); fn is the false negative responses (pixel

doesn’t belong to tissue i but classified as tissue type i) and n is the total number of pixels

of tissue type i.

Limited by space, the classification results are not shown here. The performance of the

MAGIC-FCM is summarized in Table 4, which listed the misclassification rate of white

matter using both MAGIC-FCM and SPFCM algorithms. To simplify the comparison,

defuzzification was performed prior to the calculation of the mislabeling rate. From the

statistics in Table 4, one can see that MAGIC-FCM outperforms SPFCM, especially when

the noise and inhomogeneity levels are high. In addition, MAGIC-FCM results appear to be
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Figure 25: MAGIC correction of simulated brain image at different corruption levels.
(A) Prototypical brain phantom. (B) SPFCM classification result of (A). (C) shows the
corrupted version of (A) at 20%-40% inhomogeneity, 1%-9% noise (upper row) and MAGIC
corrected results (lower row).
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only slightly dependent on global inhomogeneity indicating the effectiveness of the MAGIC

procedure in removing intensity inhomogeneity.

After quantitative evaluation of the MAGIC-FCM algorithm on simulated brain images,

we applied it to the plaque images we acquired that were corrupted by intensity variations.

Figure 26 presents a comparison of SPFCM and MAGIC-FCM classifications applied to two

images acquired during the same scan. There are different patterns of intensity variations

on the two images. In both cases, MAGIC-FCM gives results not deteriorated by intensity

variations. Compared with the N3 algorithm, MAGIC correction appears to be more robust

to the patterns of intensity variation field.

Local inhomogeneity, other than noise, also includes PVE and Gibbs ringing. These

kinds of artifact are prevalent in high-resolution MR images. A case of this category is

shown in Figure 27. In this example, edge-detector based gradient treating described in

the methods section was performed in both global and local intensity variation removal

procedures. It can be seen in 27(B) that some pixels belonging to hyperpiesia and fat

(pointed by arrows) were misclassified. By comparing the FCM and MAGIC-FCM results

in 27(B) and 27(F), it is demonstrated that the MAGIC process effectively removes the

PVE and ringing artifact marked by the arrow signs.

In Figure 28, a T2 weighted plaque image was tested on both SPFCM and MAGIC-

FCM algorithms. Despite significant inhomogeneity in the image, MAGIC-FCM was shown

to be able to recover the image and to generate much better results than the SPFCM

classification. The dark ring-like signal inside the vessel lumen comes from the cannula

used for mounting the vessel.

5.2.3.7 Discussion and Conclusion

The MAGIC-FCM classification results on synthetic images, simulated brain images and

high resolution vessel wall images demonstrate its ability to accurately segment MR images

in the presence of field inhomogeneity. For multicontrast image classification, since the

MAGIC procedure behaves as a preprocessing step, applying the MAGIC procedure to

images of all contrast mechanisms helps ensure the correct classification using the SPFCM.
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Figure 26: Comparison of MAGIC-FCM and SPFCM classification results on corrupted
high resolution vessel wall images of different intensity variation patterns. (A) Corrupted,
MAGIC corrected, N3 corrected images (upper row) and the corresponding SPFCM results.
(B) Corrupted by another kind of intensity variation, MAGIC corrected, N3 corrected
images (upper row) and the corresponding SPFCM results.
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Figure 27: Comparison of MAGIC-FCM and FCM classification results on high resolution
vessel wall image corrupted by global inhomogenneity, PVE and gibbs ringing. (A) Cor-
rupted image, arrow shows the gibbs ringing artifact (B) SPFCM classified result, arrows
show PVE (C) MAGIC estimated local intensity variation with the aid of edge detector (D)
MAGIC estimated global intensity variation with the aid of edge detector (E) Recovered
image (F) MAGIC-FCM result.

Figure 28: Comparison of MAGIC-FCM and FCM classification results on high resolution
vessel wall image when huge amount of intensity variation is present. (A) Corrupted image;
(B) FCM classified result; (C) Recovered image after MAGIC procedure; (D) Classified
result from MAGIC-FCM.
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The MAGIC-FCM algorithm was implemented on MATLAB (Mathworks, Natick, MA

USA). Currently, for 181 by 217 images, performing the completed MAGIC-FCM algorithm

(reduce to half the size when estimating global inhomogeneity) needs about 1 minute on

Windows operating system installed a 2.0GHz Intel Pentium 4 CPU with 512Mb ram.

This situation may be ameliorated with optimized code in compiled languages. Also, the

increment in the down sampling rate in global inhomogeneity estimation can greatly speed

up the processing time since most of the time is used in this step. Better numerical schemes

provide additional possibilities in accelerating the algorithm. The key factor in determining

the convergence rate of the MAGIC function is the size of the adaptive surface since every

pixel on the surface depends on all other pixels. In this sense, adding control points, whose

values can be fixed in the MAGIC calculation, in the adaptive surface is also a feasible

means to accelerate the development of the adaptive surface.

In some of the cases, the MAGIC-FCM algorithm reduces the contrast between com-

ponents. This is mainly caused by blurred edge appearance in the corrupted image. This,

however, does not degrade the classification results in general. This problem can be avoided

by setting a smaller threshold during gradient field treatment.

To conclude, MAGIC-FCM overcomes the misclassification issue encountered by FCM

when segmenting inhomogeneity corrupted MR images. It is a promising technique for

multicontrast MRI classification.

5.2.4 Summary

The FCM based clustering techniques developed in this section have been shown to be able

to successfully classify/segment plaque components in the presence of noise (SPFCM) and

inhomogeneity (MAGIC-FCM). The classification result of multicontrast MR images for a

specific slice is a segmented image. Each tissue class in this image is assigned a characteristic

intensity. The intensity levels are related to the final centroids of the classification and are

insufficient by themselves to label the tissue types. The following section will focus on

techniques that relying on additional information to label plaque constituents.
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Table 5: Intensity Patterns of Typical Vessel Wall Components

Calcification†Adipose
Fat‡

Media Fibrous Necrotic
Core

Fibrocellular Fresh
throm-
bus

T1W 0 +++ +/- -to+/- -to+/- +/-to+ -
T2W 0 ++ +/- - - +/-to+ -
PDW 0 +++ +/- - +/-to- +/-to+ -
DWI 0 +++ +/- +/-to- +/- +/- -
†Calcification has nearly no MR signal.
‡Adipose fat appears to be the most hyper-intense region in all the images.
+, +/- and - were used to symbolize hyper-, iso- and hypo-intense signal.

5.3 Plaque Component Labeling

Accurate labeling of classification results is critical in plaque characterization. Generally

speaking, specific patterns (e.g. intensity, contrast and etc.) for each tissue class need to

be evaluated and recognized to identify its type. In manual plaque characterization, com-

ponent labeling is based on tissues’ comparative contrasts. For instance, calcium appears

hypo-intense on MR images of all contrast, and fibrous tissue appears hypo-intense on pro-

ton density and T2 weighted images but iso-intense on T1 and diffusion weighted images.

Although a single T2 weighted image can not positively separate calcium and fibrous tissues,

the combination of intensity patterns on multicontrast MRI data offers enough information

to differentiate the two tissues. The intensity patterns of plaque components on multicon-

trast MR images are usually listed in a table. Based on the MR images we acquired (see

previous chapter) and previous research [27, 43, 83, 91], an intensity pattern table (Tab.

5) was constructed.

5.3.1 Automatic Plaque Labeling Employing Intensity Pattern Table

The majority of unsupervised plaque characterization techniques [27, 43, 83, 91] directly

borrow the “intensity pattern table” approach used in manual labeling. Taking FCM based

technique as an example, the resulting centroids for tissue clusters are labeled based on the

logic in the intensity pattern table. The segmented clusters can then be labeled with regard
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to their corresponding centroids.

5.3.1.1 Comparison of Multicontrast MRI on Fresh and Preserved Plaques Employing
Intensity-Pattern-Table Labeling Based Characterization

As an extension of the comparison between fresh and preserved multicontrast MRI in chap-

ter III, “intensity pattern table” labeling was used in combination with classification to

characterize the multicontrast MR data acquired under both fresh and preserved condi-

tions. SPFCM/MAGIC-FCM (when inhomogeneity exists) was applied first to classify the

multicontrast MRI data. Then the resulting centroids were evaluated in order to assign

proper tissue types to the classified clusters. Because of the mentioned variable intensity

issue with thrombus, its characterization is done manually. Additionally, given the intensity

similarity (as well as MR properties) between fibrous tissue and necrotic core (refer to Chap-

ter IV), an additional logic is included in the labeling process to differentiate them: tissues

adjacent to dense fibrous tissue or calcium were labeled as fibrous; otherwise, they were

labeled as necrotic core. Manual segmentation was performed on the histological sections

to provide references in evaluating the characterization results. Details about histological

preparation can be referred to Chapter IV.

Figure 29 exhibits the characterization results of the multicontrast MRI shown in Fig-

ure 11. In this figure, characterization results for fresh scan, preserved scan and the cor-

responding histological slice are compared. Calcification, dense fibrous tissue and necrotic

core regions are color-coded in black, blue and yellow, respectively. The grey level intensity

shows tissues with different MR contrast that were grouped by the SPFCM algorithm and

probably represent tissues with different ratios of smooth muscle cells to collagen. Visually,

results corresponds well with histology in extent as well as spatial locations.

To evaluate how characterization of plaque constituents compares between fresh, pre-

served and histological specimens, we used a component ratio introduced by previous study

[43].

ComponentRatio =
ComponentArea

OverallArea
% (48)
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Figure 29: Plaque characterization results (employing intensity-pattern-table labeling)
from multicontrast MRI under fresh and preserved conditions compared with manual seg-
mentation of the Mason’s Trichrome stain.

This comparison overcomes the registration difficulties caused by morphological defor-

mation during histological processing, but has the drawback of sacrificing positional in-

formation of the plaque constituents. Pearson’s correlation coefficient and paired-sample

student’s t-test was used to compare component ratios between fresh and preserved scans,

between histology and fresh scans, and between histology and preserved scans.

Since the histological slice (5µm) is 200 times thinner than that of MRI (1mm), we used

a component ratio averaged from 1 to 4 histological slices (depending on the variability of

plaque geometry and composition across adjacent histological slices) that aligned with the

corresponding MR slice to perform the comparison. A single slice was used if the plaque

was primarily concentric intimal hyperplasia. Multiple slices were used if the plaque was

complex. To compare the component ratios yielded by fresh and preserved characterization

and histological results, we evaluated the percent difference in component ratio between

two results as:

PComponentRatio(1v.s.2) =
ComponentRatio(1)− ComponentRatio(2)

ComponentRatio(ref)
% (49)

For example, if comparing fresh and preserved scans, fresh = 1 and preserved = 2.

The value P (1vs.2) gives the relative difference between component ratios for fresh and

preserved scans. ComponentRatio(ref) was set to be the component ratio calculated from
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Table 6: Mean and Standard Deviation of Component Ratio Percent Difference for Plaque
Constituents

Freshv.s.Preserved Histologyv.s.Fresh Histologyv.s.Preserved
Ca(n=6) 5.01%±27.12% -6.72%±35.82% -1.70%±23.72%
FT(n=11) 7.37%±15.86% -0.47%±12.94% 6.91%±19.57%
NC(n=7) 16.54%±27.17% -10.71%±31.47% 5.84%±32.34%
Fi(n=2) -6.29%±8.89% 13.93%±7.40% 7.64%±1.49%
Th(n=1) -6.49% -2.60% -9.09%
Ca-calcification, FT-Fibrous Tissue, NC-Necrotic Core, Fi-Fibrocellular and Th-thrombus.
n is the number of ROIs.

Table 7: Paired, Two-tailed t-statistics of Grouped Component Ratio

Freshv.s.Preserved Histologyv.s.Fresh Histologyv.s.Preserved
Component Ratio
Difference

-1.13%±3.38% -0.65%±2.96% -1.77%±4.60%

r 0.98 0.98 0.97
95% CI for r 0.9579to0.9913 0.9724to0.9944 0.933to0.986
t -1.731 -1.137 -2.006
p 9.53% 26.58% 5.54%
t critical(d.f.=26) 2.056 2.056 2.056
95% CI for mean -2.46%to0.20% -1.82%to0.52% -3.59%to0.04%
d.f.: dimension of freedom; r: Pearson’s correlation; CI: confidence interval.
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histology. A paired t-test and a confidence interval analysis were performed to compare

differences between fresh and preserved scans.

When component ratios from each of the five plaque constituents (necrotic core, fibro-

cellular, fibrous tissue, thrombus and calcification) were grouped over all slices, excellent

correlation was acquired between fresh and preserved conditions (r = 0.98). Similarly,

excellent correlation was found between 1) histology and fresh conditions and 2) histology

and preserved conditions with Pearson’s correlation coefficient of 0.98 and 0.97, respectively.

The percent difference (as defined in Eq. 49) in component ratio between the characteriza-

tion results from fresh and preserved conditions for each plaque component were calculated

and are summarized in Table 6. Percent differences in component ratios varied from -6.5%

(thrombus) to 16.5% (necrotic core) for fresh vs. preserved scans. Component ratios of

all tissue types were grouped together. Then, the two-tailed, paired-sample student t-test

was calculated at 95% confident level. They are summarized in Table 7. Based on the

t-statistics, there is no significant difference in component ratios between fresh and pre-

served samples. The 95% confidence intervals were calculated for the paired t-test. From

the calculation, it is 95% confident that the paired mean difference between “fresh” and

“preserved” characterization results falls in the interval of [-2.46%, 0.20%], which is narrow

given the variability of component ratios between tissues.

The result supports our claim in the previous chapter that preservation does not affect

the characterization techniques relying on tissues’ comparative contrasts.

5.3.1.2 Limitations

From the above characterization results, it can be seen that combining FCM based cluster-

ing and “intensity pattern table” labeling provide a promising approach to automatically

characterize atherosclerotic plaques. However, there are issues hindering the usage and

performance of this approach. The foremost problem is the imaging parameter dependent

issues described previously. Usually, the changing of imaging parameters is coupled with the

changing of comparative image contrast and thus the intensity pattern table. The hurdle of
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generating intensity pattern table for changed imaging parameter greatly reduces the flexi-

bility and robustness of “intensity pattern table” labeling. Moreover, the existence of over

and under classification during the classification step makes the interpretation of labeling

based on intensity table ambiguous. As a result, significant user interaction is needed for

this approach.

5.3.2 Automatic Plaque Labeling Employing Quantitative MR Properties

In previous sections, we have indicated that the solution to the mentioned difficulties associ-

ated with plaque characterization lies in the development of a new labeling step to substitute

the “intensity pattern table” approach. To achieve this goal, we sought a method based on

the fundamental determinant of the MR image contrast - the tissues’ MR properties.

Tissues’ MR properties can be extracted from MR images and synthesized to generate

quantitative maps that have the fundamental information to characterize plaque compo-

nents. Specifically, previous research [5, 81, 94] has shown that the T2 values of atheroscle-

rotic tissues can be used to differentiate all typical plaque components. This indicates that

plaque characterization may benefit from using quantitative T2 maps because tissues’ T2

values are independent of the imaging parameters and rely only on temperature and mag-

netic field strength. In this aspect, quantitative T2 maps may be superior to multicontrast

MR images for plaque characterization. However, quantitative maps usually suffer from

poor SNR, which often prevents accurate automatic plaque characterization.

We propose a solution to this dilemma by using SPFCM/MAGIC-FCM to classify the

multicontrast MR data first and then relying on quantitative T2 maps to label the clas-

sification results. We named this approach as a Priori Information Enhanced Clustering

(PIEC). The classification step relies on the already described SPFCM and MAGIC-FCM

algorithms. In the labeling step, the classified result is labeled by relying on the a priori

knowledge of each constituent’s T2 distribution using a quantitative map. We hypothesize

that the PIEC technique will provide accurate plaque characterization results with minimal

user interactions.
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5.3.2.1 Quantitative T2 Map Calculation

The T2 distributions of coronary plaque components at 4.7T were measured and are listed in

the previous chapter (Tab. 2). It should be noted that these values were acquired only from

a subset of the coronary images (7 of 15). The T2 distribution for each plaque constituent

was estimated with the assumption that it is Gaussian distributed (of the measured mean

and standard deviation). The assumption of a Gaussian distribution was justified by visual

inspection of the T2 values during measurement and it is also verified by previous research

[15]. These T2 distributions servers the purposes of providing “templates” for labeling the

plaque constituents.

Each pixel in the quantitative T2 map can then be evaluated against the T2 distribution

“templates” to recognize its type (label). It may first seem that additional data are needed

besides the multicontrast MRI to calculate quantitative T2 maps, proper acquisition of

multicontrast MRI data resolves this inflexibility. Based on Equation (12), the T2 map

can be generated easily with a proton density weighted and a T2 weighted image of the

same repetition time TR. In other words, quantitative MRI is implicitly included inside the

multicontrast MRI dataset. In our acquisition, we conform this restriction and additionally,

we restrict the echo time TE to be the same for proton density and T1 weighted images.

This scheme ensures the T1, T2 and proton density maps can be easily generated based on

the T1, T2 and proton density weighted images.

5.3.2.2 Bayesian Labeling

Given the basic idea of labeling employing quantitative T2 maps, an appropriate scheme

is needed to match each pixel’s T2 value to the T2 “templates”. In the current thesis, the

matching was conducted based on Bayesian labeling.

Specifically, SPFCM/MAGIC-FCM was applied to multicontrast MR data first to clas-

sify plaque constituents. After the classification, pixels of similar intensity and spatial

location are grouped into the same class. Theoretically, given the T2 value of a pixel, its

tissue type can be determined based on the a priori knowledge about T2 distributions in
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the various tissues that comprise the plaque. In practice, it is appropriate to employ a sta-

tistical T2 model in plaque labeling given the presence of noise and variable T2 component

of each specific tissue.

If we consider the known T2 distributions of plaque components as a conditional proba-

bility and estimate the “probability of occurrence” for each plaque constituents, the poste-

rior probability of occurrence given measured T2 values can be easily derived employing a

Bayesian approach. Specifically, this process can be formularized as Equation (50), where

t describes the T2 value of a specific pixel, c symbolizes the tissue type of a specific pixel,

i is used as the tissue type index and p defines the probability function. In this equation,

the denominator on the right hand side is a constant, so it is usually ignored.

p(c = Cj |t = T ) =
p(t = T |c = Cj)p(c = Cj)∑
i

p(t = T |c = Ci)p(c = Ci)
(50)

In Equation (50), the left hand side is the posterior probability defined as the possibility

of a specific tissue belongs to type Cj under the condition that its T2 value equals T . The

numerator of the right hand side is the multiplication of the conditional probability (prob-

ability of T2 value being T given tissue type is Cj) and the prior probability (probability

of tissue’ type being Cj). In our application, the conditional probabilities (T2 distributions

of each plaque constituents) have already been calculated in the T2 quantification section.

The prior probabilities can be assumed to be equal for all the constituents initially, meaning

all tissues have equal probability of presence in plaques. After calculating the first slice,

the prior probability of the adjacent slice can be updated to be the posterior probability of

the previous slice to increase the calculation accuracy. The prior probability for the first

slice could be approximated with the calculated posterior probability (for the same slice) as

well to improve the labeling accuracy. For most cases, however, equivalent prior probability

assumption works well enough for the first slice.

Based on this Bayesian model, the detailed scheme of our proposed plaque labeling is

as follows:

1. Calculate a quantitative T2 map using proton density and T2 weighted images.
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2. Compute the posterior tissue probabilities of being among all the tissue types, em-

ploying Eq. (50) for each pixel

3. determine the overall posterior probability for each segmented class (of the classified

results) by summing up the posterior probabilities of all the pixels belonging to this

region

4. Label each segmented region using the tissue type with maximum posterior probability

5.3.2.3 Evaluation of PIEC on Computationally Simulated Data

The performance of PIEC characterization was evaluated on the computational phantom

based on pixel-by-pixel comparison between the actual tissue type and the characterization

results. The computational phantom (Fig. 30(A)) is generated manually based on the

histology of a typical advanced plaque. To be consistent with the analyzed MR data, which

have an effective in-plane resolution of 30µm× 30µm, the matrix size of the computational

phantom was chosen to be 256× 256 and the outer diameter of diseased vessel was chosen

as 8mm.

The signal intensity for the multicontrast MR images of this phantom was computed

by employing Eq. 12 in the spatial domain. For each pixel of a specific tissue component

in the plaque phantom, the T1, T2 and proton density values were assigned randomly

based on means and standard deviations of the fresh tissue’s T1, T2 and proton density

to approximate the MR property distribution. T2 distributions for fibrocellular (fibrous

cap), media, necrotic tissue and adipose fat (including excellular lipid) were obtained from a

subset of our vessel samples (7 of 15) and described previously. Since the necrotic and fibrous

tissues have nearly no signal separation (in multicontrast MR images) and are similar in

composition, they are group to be the same tissue - necrotic tissue/core. Besides simulation,

T2 distributions also serve the purpose of providing prior knowledge that is needed in plaque

characterization. In the computational simulation, T1 and proton density are less critical

than the T2 distributions since they are not used in the labeling step of PIEC. The T1

distributions for these tissues were derived from published values [94]. The proton density

distributions were assumed to be 1± 0.1 for all the tissues except for adipose fat (2± 0.1)
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Figure 30: (A) The simulated plaque phantom. The phantom was created manually
based on a representative plaque sample from a coronary artery. (B) The simulated proton
density, T2 and T1 weighted images based on the phantom.

and calcium (0.1± 0.1). The MR properties used in multicontrast MR data simulation are

listed in Table 8. In our simulation, two sets of imaging parameters were used. For the first

parameter set, TR/TE was chosen to be 900ms/15ms for T1 weighted image, 3500ms/15ms

for proton density weighted image and 3500ms/60ms for T2 weighted images. For the

second parameter set, TR/TE was chosen to be 1200ms/10ms for T1 weighted image,

3000ms/10ms for proton density weighted image and 3000ms/50ms for T2 weighted image.

The phantom and simulated multicontrast MRI data (parameter set 1) are shown in Fig.

30B.

Similar to previous studies [17], we utilized sensitivity, specificity and true positive rate

as criteria in evaluating the performance of PIEC. Specifically, sensitivity was calculated

as true positives (PIEC was correct in labeling a pixel as a specific tissue type) over the

summation of true positives and false negatives (PIEC was wrong in not labeling a pixel

as a specific tissue type). Specificity was calculated as true negatives (PIEC was correct
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Table 8: Plaque Properties for Multicontrast MRI Simulation

Tissues T2(ms) T1(ms) Proton Density
Media 49.7±9.7 1892±27 1.0±0.1
Necrotic Tissue/Core 30.6±7.0 1114±56 1.0±0.1
Fibrocellular 54.7±10.7 1834±132 1.0±0.1
Adipose Fat 43.2±6.3 636±50 1.0±0.1
Calcification 30.0±7.0 1000±100 0.1±0.1
The MR properties of calcification are roughly estimated.

in not labeling a pixel as a specific tissue type) over the summation of true negatives and

false positives (PIEC was wrong in labeling a pixel as a specific tissue type). The true

positive rate was calculated as true positives over the summation of true positives and false

positives.

The PIEC characterization results of the simulated MR datasets of the two sets of

imaging parameters are shown in Fig. 31. Characterization sensitivity, specificity and

true positive rate for the two situations are summarized in Table 9. PIEC demonstrates

excellent characterization accuracy on both of these two simulated datasets. Since imaging

parameters affect the image contrast and thus the fuzzy c-means classification results, there

are differences in PIEC’s performance on the two datasets. The performance of PIEC on

these two simulated datasets demonstrated that PIEC is viable over a range of parameter

settings. The comparatively lower accuracy for fibrocellular and media tissues is caused by

the low contrast between them since their compositions are similar.

Comparing the characterization results in Fig. 31 with the computational phantom in

Fig. 30, we can see that all the tissue types are correctly labeled. The Bayesian quanti-

tative T2 labeling function of PIEC characterization works well even in case of marginal

separation (fibrocellular, media and adipose fat). Moreover, from the comparison, it can

be seen that segmentation errors in the classification step are the main contributor to mis-

characterization.
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Figure 31: (A) PIEC characterization result of the simulated multicontrast MR dataset
1; (B) PIEC characterization result of the simulated multicontrast MR dataset 2.

Table 9: Sensitivity, Specificity and True Positive Rate of PIEC Characterization

Tissues Sensitivity(1‖2) Specificity(1‖2) True Positive Rate(1‖2)
Media 96.9%‖94.8% 98.4%‖97.4% 94.9%‖92.2%
Necrotic Tissue 98.7%‖97.9% 99.7%‖99.3% 95.8%‖90.5%
Fibrocellular 90.2%‖81.2% 99.4%‖99.2% 95.9%‖93.5%
Adipose Fat 99.8%‖99.7% 99.6%‖99.9% 98.4%‖99.8%
Calcification 99.8%‖99.5% 99.9%‖99.9% 99.7%‖99.8%
Totally 65536 pixels were analyzed for each characterized image.
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5.3.2.4 Evaluation of PIEC on Multicontrast MRI Acquired Under Fresh Conditions

PIEC characterization was then applied to multicontrast MRI data acquired on the coronary

artery samples (all 15 vessels acquired under fresh conditions). The characterization results

were evaluated based on histological results being the gold standard. Both classification

and labeling contribute to the mischaracterization in the final result. Since the classifica-

tion accuracy of the FCM based algorithm on ex-vivo scans has already been evaluated in

previous studies [43, 91], we only assessed the performance of the labeling step of PIEC

characterization for the coronary scans. To evaluate the performance of PIEC labeling,

the histological results were manually segmented and labeled by our histology colleagues,

resulting in a number of separate tissue segments. Histological segments were aligned with

PIEC characterization results based on the morphological landmarks. For each tissue seg-

ment of the PIEC characterized results, its tissue type label was checked against that of the

characterized histological images to inspect whether the PIEC response is correct. The true

positive rate of the labeling step, as defined above, was used as the evaluating criterion.

Here, the false positive of a specific tissue was the summation of all isolated segments that

belong to this tissue according to PIEC but not labeled as it by histology. The true positive

for a specific tissue is the number of segments where PIEC labeled tissue correctly according

to histology.

A typical PIEC result on a slice containing calcium, fibrocellular, media, necrotic tissue

as well as adipose fat result is shown in Figure 32. Visually, the PIEC result identifies

various plaque tissues consistent with histological stains. The chemical shift artifact causes

minor mischaracterization near the outside boundary (arrow). The tissue culture media

M199 has a much greater T2 value (> 500ms) than plaque tissues. It is classified and

labeled as background. In Figure 33, another example is shown. In this example, the five

angle star marked a region of adipose fat that is mislabeled as media.

Out of the fifteen vessel samples, two vessels contain two distinct atherosclerotic plaques;

the others contain only one plaque. For each of the seventeen plaques, a single MRI slice

that was well aligned with histology was selected and used to measure the true positive

rate of the Bayesian labeling to assess the labeling accuracy. The measured true positive
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Figure 32: (A) Multicontrast MRI of coronary plaque tissue (from left to right: proton
density, T2 and T1 weighted), and (B) Color coded PIEC characterized result (left) and
corresponding smooth muscle actin stain (right).

Figure 33: (A) Multicontrast MRI of coronary plaque tissue (from left to right: pro-
ton density weighted, T2 weighted and T1 weighted), and (B) PIEC characterized result
(left) and smooth muscle actin stain (right) corresponding to the region contained in the
rectangular box.
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rates ranged from 69% to 100%. Specifically, the true positive rates are 88.9%, 70.6%,

69.2%, 94.7%, 75.0%, 100.0% for calcification, adipose fat, media(loose matrix), necrotic

tissue, fibrocellular, M199, respectively. Since the fibrocellular, media and adipose fat’s T2

distributions are not well separated, it was not surprising that their true positive rates are

lower than those of calcium and necrotic tissue.

5.3.2.5 Discussion

Most previous investigations on automated plaque characterization have relied on using

multicontrast MR data alone. Itskovich et al. [43], Adame et al. [2] and Sun et al.

[91] employed various FCM based algorithms in combination with the intensity patterns

on multicontrast MR images to characterize plaque constituents. The main advantage of

these unsupervised techniques is that no training is required. However, they are usually

susceptible to over or under classification issues and require user interactions to resolve the

logic ambiguity when interpreting the intensity table. Alternatively, Clarke et al. [16, 17]

developed a maximum likelihood classifier that relies on the actual intensities of plaque

tissues on multicontrast MR data, and Liu et al. [61] used a Bayesian approach that relies

on tissue intensity on multicontrast MR images and morphological knowledge. Both these

two supervised techniques avoid the under and over classification problem mentioned above

but need repetitive training, which makes them more dependent on imaging parameters

and scanner systems.

The PIEC technique described in the thesis incorporates the advantages of both su-

pervised and unsupervised techniques by separating characterization into classification and

labeling. The unsupervised classification part operates on high SNR multicontrast MRI

data to segment different tissue groups, while the supervised labeling part operates on the

lower SNR quantitative T2 maps to label the classified tissue groups.

The main benefit of using quantitative MR properties for tissue labeling is that the

quantitative property distributions only need to be measured once for a specific magnetic

field strength. It should also be noted that no additional data acquisition is needed for

quantitative MRI labeling since a rough T2 map, calculated based on the proton density
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and T2 weighted MR images (with the same TR) of the multicontrast MR dataset, are

used to determined posterior probability. In the current thesis, we focus on employing

the quantitative T2 distributions of plaque tissues to label classification result based on a

Bayesian approach because it has been shown in many studies that each plaque component

has a characteristic T2 distribution. Based on our experiments, plaque labeling based on T2

distributions is sufficient in most cases. However, instances of false PIEC labeling occurred

in some cases where the T2 distributions are only marginally separated (Tab. 8). To reduce

the false labeling rate under this situation, the Bayesian labeling could be generalized to

utilize MR properties other than T2. For example, it can be seen that although media/loose

matrix and adipose fat have similar T2 values, their proton densities are quite different. To

take advantage of this, the conditional probability density can be generalized from a 1-

dimensional Gaussian distribution to a multiple joint Gaussian distribution (Eq. (51)) in

the Bayesian formulation (Eq. (50)).

p(t1 = T1, t2 = T2, pd = PD...|c = Cj) =
e−

1
2
[x−µx]T C−1[x−µx]

(2πdet(C))
n
2

(51)

In Equation 4, x symbolizes the vector form of tissues’ MR properties (T1, T2, PD );

µx and C are the expectation and covariance matrix, respectively. By assuming all the MR

properties are independent from each other, the covariance matrix can be approximated as

diagonal matrix with its eigen values equal to the standard deviations of the tissues’ MR

properties. The multiple joint Gaussian distribution potentially improves the performance

of PIEC by providing more separation of different tissue groups and minimizing the false

labeling. An example using this generalized PIEC technique is shown in Figure 34. From

this figure, the advantage of adding other MR properties in labeling provide much better

separation for plaque components.

Another MR property that may add value to plaque tissue labeling is the ADC value.

This property may help to better label the thrombus tissue, which has a variable T2 but

constant ADC, according to previous studies [5, 95]. Besides MR properties, other a pri-

ori knowledge can be included in the multiple joint Gaussian probability of the Bayesian

labeling formulation. One example is the morphological information proposed by Liu et al
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Figure 34: (A) T2 distributions (left) and T2-PD joint distributions (right) of adipose fat
and media. (B) Multicontrast MRI of coronary plaque tissue (from left to right: proton den-
sity weighted, T2 weighted and T1 weighted) and PIEC characterization result employing
T2-PD joint distributions.

[61]. Similarly as with the MR properties, this a priori information is system and imaging

parameter independent and requires no repeated training.

Accurate measurements of plaque tissues’ MR biophysical properties are necessary in

order to utilize them for tissue labeling. The in-vivo measurements of plaque tissues’ T2

distributions under operating magnetic field strengths are essential for PIEC to be used

clinically. A database containing T2 distributions under different conditions may facilitate

this practice.

As pointed out earlier in this chapter, a common issue with FCM based techniques is

under or over classification of plaques because the number of tissues present in the plaques

is unknown. In PIEC, this problem is handled by always over classifying the plaque con-

stituents in the clustering step; and the over classified groups of the same tissue are identified

as the same type in the labeling step. The other potential advantage from over classification

is that the initial centroid dependent issue of the clustering technique could be alleviated.

Just as additional MR properties can improve the accuracy and reliability of plaque
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labeling, additional contrast mechanisms provide more separation between tissues on MR

images and thus generate better classification results. For example, Hatsukami et al. [41]

reported that three dimensional MOTSA sequence can be used to better distinguish thick

fibrous tissues from the thin rupture-prone caps. Given the trade-off between more contrast

mechanisms and acquisition time, one of the future needs in MR plaque characterization is

to determine the optimal number and type of MR acquisitions.

One of the limitations of the current research is that both the simulated and ex-vivo

MR data were not deteriorated by motion. Moreover, the resolution/SNR of these scans

is not achievable for in-vivo scans. Therefore, PIEC’s performance is expected to degrade

when applying to in-vivo data. Additionally, our coronary sample size is limited. Most

vessels we harvested from heart transplant patients were highly fibrotic and none contained

intra-plaque/mural thrombi. Nevertheless, inclusion of new tissue types should be readily

supported by PIEC characterization theoretically. As mentioned earlier, thrombus has

non-uniform T1 and T2 values and may cause problems during classification and labeling.

Potentially, it could be mitigated by including the ADC in the joint Gaussian probability

density function.

5.4 Conclusion

Throughout the chapter, efforts were made to develop an automatic plaque characterization

routine that is viable over a range of imaging conditions and system imperfections. The

characterization, often regarded as a single step processing, was further divided into classifi-

cation and labeling. This separation provides a lot of flexibility for plaque characterization.

The classification relies on FCM based clustering technique to segment different tissue

groups. Taking into consideration of noise and inhomogeneity, SPFCM and MAGIC-FCM

techniques were developed to improve the classification accuracy in the presence of system

imperfection. A new labeling approach utilizing quantitative MR properties was proposed.

Combining this labeling technique with SPFCM/MAGIC-FCM, an automatic plaque char-

acterization called PIEC was developed. The main contribution of PIEC comes from this

labeling process, which makes it unique and superior to existing plaque characterization
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techniques. The Bayesian labeling renders plaque characterization independent of imaging

parameters. Moreover, this labeling step overcomes the over and under classification issues

of the FCM clustering, which require significant amount of user interactions. It should be

emphasized that all these benefits attributes to the inclusion of quantitative MR maps in

plaque characterization. To the best of our knowledge, PIEC is the first technique that

utilizes quantitative MR maps in characterizing plaque components. Since the quantita-

tive maps could be reconstructed from multicontrast MR data easily with proper selection

of imaging parameters, PIEC requires no additional image acquisition. The evaluations

on simulated and ex-vivo multicontrast MRI data demonstrate that PIEC is robust and

accurate thus is a very promising candidate for automated plaque characterization.
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CHAPTER VI

ACCELERATING THE ACQUISITION OF MULTICONTRAST MRI

6.1 Introduction

Lengthy acquisition time is one of the major barriers in the clinical utility of multicontrast

MRI in atherosclerotic plaque imaging. Economically, long acquisition time increases the

diagnosis expenses. Technically, long acquisition time inevitably introduces patient motion,

which degrades the image quality and increases the difficulties in registering the multicon-

trast MR images.

Generally, the majority of fast MR imaging techniques involve one or combinations of

the following approaches: fast k-space coverage scheme, short repetition time, segmenting

the longitudinal magnetization. These techniques achieve the reduced imaging time at the

expenses of image resolution and SNR. Such schemes have many applications. However,

since resolution and SNR are critical in plaque characterization, these techniques are often

not viable for multicontrast MRI acquisitions.

To increase the temporal resolution of dynamic imaging (i.e. MRI acquisitions are

required for the same location after administration of the contrast agent) a unique k-space

sharing scheme can be applied to accelerate the MRI acquisitions. This type of approach

relies on the fact that all the images from the same location contain similar information (edge

and other detailed information). From MR physics, it is known that this edge information

resides in the outer edges of k-space. With this information, “shared k-space” techniques

were proposed based on the idea of acquiring the outer k-space for all the dynamic images

only once. These techniques accelerate the MRI acquisition without sacrificing the image

resolution and SNR. Generally, they reduce the acquisition time for a single MR image 2-8

fold.

Although the k-space sharing schemes are used mainly for dynamic imaging, they have

the potential of helping multicontrast MR image acquisition in the same fashion. In this
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chapter, the feasibility of using “shared k-space” techniques in fast multicontrast image ac-

quisitions are investigated. Specifically, we hypothesize that “shared k-space” reconstructed

multicontrast MRI data can provide similar plaque characterization results as “full k-space”

reconstructed data.

6.2 MR Image Formation

Before introducing “shared k-space” reconstruction, the general image formation of MRI

need to be introduced. For better understanding, it is helpful to review the essential MRI

physics covered in Chapter III. In Equation (7), it is shown that the acquired MR signal

represents the frequency information (kx, ky, kz) of the spatial data (x, y, z). Reconstruction

of the MR images, based on this relationship, is just a simple inverse Fourier transformation

of the acquired MRI signal.

Besides inverse Fourier transformation, there are other MR image reconstruction tech-

niques for specific applications. For instance, filtered back-projection scheme similar to CT

image reconstruction is usually employed for radial sampled k-space acquisition. An exam-

ple is the Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction

(PROPELLER) technique [74], which is a promising technique in motion suppression.

Because of the Fourier relationship between k-space and spatial data, all the Fourier

transform properties can be applied to MR image reconstruction. These properties include:

linearity, convolution, conjugation, scaling, time reversal, time shift, modulation, Parseval’s

theorem, etc. If the MR image is real, the Hermitian symmetry property (Eq. (52)) of the

k-space can be utilized to reduce the acquisition. This technique, also known as half Fourier

MRI reconstruction, is an example showing how reduced k-space coverage can be used to

speed up the MR data acquisitions. Assuming there are 128 phase encoding steps in a full

k-space acquisition, the half Fourier reconstruction requires acquisition of only 64 phase

encoding steps. For most spin echo and gradient echo based sequences, this reduces the

data acquisition by half. In practice, because of the system imperfections, the Hermitian

relationship is only approximated. Therefore, usually more than 50% of the full k-space is

collected for better SNR.
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k(m, n) = k∗(m,−n) (52)

It is worthwhile to mention that parallel imaging, an alternative approach for fast MR

data acquisition, involves reconstruction techniques from multiple channels of data ac-

quired from receivers in different spatial locations. For details on reconstruction techniques

such as Sensitivity Encoding (SENSE) [76], Simultaneous Acquisition of Spatial Harmonics

(SMASH) [86] and GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA)

[38], the reader is referred to more specific literature.

6.3 “Shared K-space” Reconstruction

After the brief introduction about MR image reconstruction, “shared k-space” techniques

can now be better understood. Keyhole [46, 97] and reduced-encoding imaging by general-

series reconstruction (RIGR) [54] are “shared k-space” techniques developed for dynamic

imaging.

As mentioned above, the key idea of these techniques is to reconstruct dynamic MR

images relying only on the center k-space of the current frame. The outer k-space will

be retrieved from reference images acquired previously. The underlying reason for doing

this is because there is data redundancy in dynamic images. When comparing a series of

dynamic frames, the edge and morphological information is comparable in all the images

despite the change of image contrast. The fact that this redundant information resides

in outer k-space enables us to substitute the outer k-space of dynamic images with that

of the reference image, which requires less k-space coverage. In the keyhole technique,

direct replacement of the outer k-space is applied to achieve this goal. This approach,

however, does not ensure the continuity of the k-space data. As a result, direct substitution

usually introduces Gibbs ringing. This problem can be overcome in the RIGR technique by

constrained reconstruction.

The theories of keyhole and RIGR reconstructions are briefly covered in the following

two sections. Generally speaking, both techniques acquire the full k-space of a reference

image and only the center k-space of the objective images. The objective images are then
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Figure 35: The schematic drawing showing keyhole reconstruction. In the objective image,
the red k-space lines symbolize acquired center k-space, black lines symbolize k-space data
borrowed from the reference image.

reconstructed using both the acquired center k-space and high frequency information from

the reference image. Because the same amount of k-space as reference image is used for

objective image reconstruction implicitly, “shared k-space” reconstruction does not sacrifice

resolution and SNR, theoretically.

6.3.1 Keyhole Reconstruction

Keyhole reconstruction was independently proposed by Van et al. [97] and Jones et al. [46].

In this technique, the outer k-space of the reference image is combined with the acquired

center of k-space from the objective image to reconstruct the full objective image. Figure 35

schematically illustrates the direct k-space replacement approach of keyhole reconstruction.

Because the k-space used in keyhole reconstruction is synthetic, the magnitude and

phase are not continuous. This k-space inconsistency introduces Gibbs ringing artifacts,

which manifests as false edges on the reconstructed MR images. The ringing artifact can

get very serious when the borrowed k-space portion is large or when the contrast between

reference image and objective images is great. This artifact could potentially mimic the
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plaque tissues and may degrade the plaque characterization.

6.3.2 RIGR Reconstruction

The k-space inconsistency issue in the keyhole reconstruction is overcome by the constrained

reconstruction of RIGR, which was developed by Liang and Lauterbur [54].

The mathematical framework for RIGR is based on generalized series (GS) model. With

the GS model, the reconstructed image IGS is expressed as the weighted summation of basis

functions (Eq. (53)).

IGS =
∑

n

cnϕn (53)

In Equation (53), cn is the weighting factor and ϕn is the basis function. In case the

basis function is sinusoidal functions, the equation becomes a Fourier series expression. In

RIGR, the basis function are chosen to be the family of constrained complex sinusoids (Eq.

(54)).

ϕn = Tei2πn∆kx (54)

, where T is a constraint function containing the a priori information. The GS reconstruc-

tion function, accordingly, can be reformulated as Equation (55).

IGS = T
∑

n

cnei2πn∆kx (55)

The constraint function in Equation (55) can be derived from the magnitude of reference

image, |Iref |. With this substitution, the GS function becomes:

IGS = |Iref |
∑

n

cnei2πn∆kx (56)

Under this framework, the problem of reconstruction is converted to the calculation of

the weighting factors. In RIGR, the weighting factors can be computed with the constraint

that the k-space of reconstructed image should equal to the corresponding acquired k-space

of the objective image. Assuming there are totally 2N + 1 phase encoding lines (from −N

to N) acquired for the objective image, Equation (56) becomes the following:

IGS = |Iref |
N∑

n=−N

cnei2πn∆kx (57)
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kacq(m) =
∫ ∞

−∞
IGSe−i2πm∆kxdx (58)

The constraint discussed above is formulated in Equation (58), where kacq(m) is the

acquired center k-space of the objective image. Substituting IGS with Equation (57), the

constraining functions is reformulated as (59).

kacq(m) =
∫ ∞

−∞
|Iref |

N∑
n=−N

cnei2πn∆kxe−i2πm∆kxdx (59)

Substantiating the Fourier transform of |Iref | with kc, (59) is converted to a set of linear

equations illustrated in (60).

kacq(m) =
N∑

n=−N

cnkc(m− n), −N ≤ m ≤ N (60)

These linear equations can be solved more efficiently in the matrix form shown in (61):

Hc = k (61)

, where H is the matrix shown in 63, c is the weighting vector [c−N , c−N+1, c−N+2, ..., cN−2, cN−1, cN ]T ,

and k is the acquired k-space data [kacq(−N), kacq(−N + 1), kacq(−N + 2), ..., kacq(N −

2), kacq(N − 1), kacq(N)]T .

H =



kc(0) kc(−1) kc(−2) ... kc(−2N)

kc(1) kc(0) kc(−1) ... kc(−2N + 1)

kc(2) kc(1) kc(0) ... kc(−2N + 2)

. . . ... .

. . . ... .

. . . ... .

kc(2N) kc(2N − 1) kc(2N − 2) ... kc(0)



(62)

Many numerical schemes such as Levinson algorithm can be used to solve Equation (61).

Since the matrix H may be rank-deficient in practice, it is suggested [54] that perturbation

be introduced by replacing H with H + µI to solve the problem. Here, µ is determined

based on the SNR [53] and I is the identity matrix.
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Figure 36: “Shared k-space” reconstruction on water-fat phantom. The upper row shows
the full k-space reconstruction of T1 (left) and diffusion (right) weighted images. If using T1
weighted image as reference image, and with 1/8 original k-space of the diffusion weighted
image, the “shared k-space” results can be reconstructed with keyhole (lower left) and RIGR
(lower right) scheme. It can be seen that both keyhole and RIGR reconstruction results
approximate the full k-space results very well. In the keyhole result, Gibbs ringing artifact
(marked by arrow) is seen near the boundary location.

The constraint function, T , can contain phase a priori information besides magnitude.

Under this situation, T is replaced by |Iref |eiθ. It is suggested [54], however, that including

phase constraints, in most cases, gives inferior result than using magnitude alone in RIGR

reconstruction.

The advantage of RIGR over keyhole technique is the k-space data consistency. It can be

easily verified that the extrapolated k-space data (outer k-space) are continuous at least to

the 2N th order at the merging boundaries [54]. Because of this, the Gibbs ringing artifacts

are maximally suppressed.
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6.4 “Shared K-space” Reconstruction in Multicontrast MRI

6.4.1 Preliminary Study

For multicontrast MRI, “shared k-space” techniques share the outer k-space for MR images

of different contrast mechanisms rather than dynamic images. The keyhole and RIGR

techniques developed for dynamic imaging are readily applicable to multicontrast MR data.

This idea is first tested on a water-fat phantom acquired with regular spin echo sequence

(4.7T small bore scanner, birdcage coil). The result is shown in Figure 36. It can be

seen that both keyhole and RIGR reconstruction results approximate the “full k-space”

reconstructed diffusion weighted image very well. In the keyhole result, Gibbs ringing

artifact, as expect, is seen near the boundary location (arrow on Figure 36).

The “shared k-space” techniques were then tested on the atherosclerotic vessel images

retrieved from 1.5T Siemens clinical scanner. The MR images were acquired with a 4-

element phased-arrayed coil using turbo spin echo sequence (TSE, turbo factor = 25).

From the results, we found that although 1/8 k-space reconstruction provides reasonable

results, it missed some fine details in some cases. This indicates the necessity of increasing

k-space coverage. We, therefore, tested on using 1/4 k-space to perform the reconstruction,

which gave more accurate approximations.

“Shared k-space” reconstruction techniques, based on the preliminary results, show

promises in accelerating multicontrast MRI acquisition. The following study is conducted

for more systematic evaluation of the techniques.

6.4.2 Experiment Setup

Five atherosclerotic aortas from cadavers were obtained from the morgue at Emory Uni-

versity Hospital. The study was approved by the institutional review board of Emory

University. The vessels were cut open and immersed in formalin prior to the MR scanning.

All MRI scans were conducted on a Siemens MAGNETOM Avanto 1.5T scanner (Siemens

Medical Solutions, Erlangen, Germany) using a 2-channel carotid coil (CAD Sciences,

White Plains, NY ) at room temperature (∼ 20◦C). After identifying the plaque(s) on
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Table 10: Imaging Protocol and Parameters for ”Shared K-space” Reconstruction Exper-
iment

PD Weighted T1 Weighted T2 Weighted Partial T2 Weighted
TR(ms) 2000 500 2000 2000
TE(ms) 9.8 12 81 58
TSE factor = 11 for all sequences.

the survey image(s), two-dimensional multi-slice TSE sequences were used for all the mul-

ticontrast MRI acquisitions. The MRI protocol and parameters are summarized in Table

10. For all acquisitions, the FOV was 8cm×8cm and the slice thickness was 2mm. The ac-

quisition matrix was 512× 264, which yields the in-plane resolution of 0.16mm(Readout)×

0.3mm(Phase). Five slices were acquired per vessel. For each slice, the number of excita-

tions (NEX) was three.

6.4.3 “Shared K-space” Reconstructed Data Analysis

To perform the “shared k-space” reconstruction for multicontrast MRI, proton density

weighted images were set as reference images. Images of other contrast mechanisms were

reconstructed with: 1) fully acquired k-space using regular inverse Fourier transform, and

2) 25% k-space (65 out of 264 lines) employing “shared k-space” approaches.

Quantitative T2 values calculated employing “full k-space” and “shared k-space” recon-

structed multicontrast MR images were quantitatively compared. In order to evaluate the

effect of “shared k-space” reconstructions on plaque characterization, the PIEC method-

ology described in the previous chapter was applied to both ”full k-space” and ”shared

k-space” reconstruction results. Specifically, PIEC results from “shared k-space” recon-

structed multicontrast MRI were compared against PIEC results from “full k-space” re-

constructed images, which serve as the gold standard. Pixel-wise characterization accuracy

(K), defined in Equation (63), was used as the evaluation criterion.

K =
number of pixels correctly characterized according to gold standard

total number of pixels
% (63)
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Figure 37: Visual comparison between “full k-space” and “shared k-space” reconstruc-
tions. The upper, middle and lower rows show the “full k-space”, keyhole and RIGR
reconstructed results, respectively. The “shared k-space” reconstruction results appear to
approximate the “full k-space” reconstruction results quite accurately. As expected, RIGR
reconstruction exhibits better suppression of the Gibbs ringing artifact than keyhole (see
T1 weighted image). However, for all the vessel samples, the RIGR reconstruction results
appear blurry and possess reduced contrast compared to keyhole results (see T2 weighted
images).

6.4.4 Results and Discussion

6.4.4.1 Qualitative Comparison

In general, the “shared k-space” reconstructed results approximate the “full k-space” re-

constructed results very well.

A typical example is shown in Figure 37. As expected, RIGR reconstruction exhibits

better suppression of the Gibbs ringing artifact than keyhole reconstruction. However, for

all the vessel samples, the RIGR reconstruction results visually appear blurry and possess

reduced contrast compared to the keyhole reconstruction results. For this specific example,
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Figure 38: T2 maps of “full k-space” and “shared k-space” reconstructed MRI. The upper,
middle and lower rows show the “full k-space”, keyhole and RIGR reconstructed MRI data
and its corresponding T2 map, respectively. It is apparent that T2 map from keyhole
reconstructed MR images approximates the “full k-space” T2 map much better than that
from RIGR data. Note: the three proton density weighted images shown here are identical.

the sharpness of the transition between fibrous tissue and media, defined as the slope of the

transition in 1D profile, are 6.9 and 2.5, and the contrast to noise ratio (CNS), defined as

the difference between SNR(media) and SNR(fibrous), are 7.2 and 2.3, respectively. The

smoothing and reduced contrast of RIGR reconstructed images are the byproducts of Gibbs

ringing suppression.

6.4.4.2 Quantitative T2 Map Comparison

For each vessel sample, quantitative T2 maps were calculated employing ”full k-space”,

keyhole and RIGR reconstructed MRI data (specifically, proton density, partial T2 and T2

weighted images) separately. Details about T2 map calculation were presented in Chapters

III. Figure 38 illustrates a typical example of T2 maps calculated from the MRI dataset
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Figure 39: Enlarged view of the region marked by the red rectangular shown in Figure
38.

reconstructed using the three schemes. The computational T2 maps calculated based on

keyhole data appear to approximate the “full k-space” T2 maps more accurately than those

from RIGR data. A enlarged view of the region marked by the red rectangular in Figure

38 is shown in Figure 39.

In the vessel tested, atherosclerotic plaques are predominately composed by media,

fibrous tissue and adipose fat. Their T2 values were measured on T2 maps from “full k-

space”, keyhole and RIGR reconstructed MR data. To avoid observer bias, the same pixel

locations were chosen in measuring the T2 values for a specific tissue type across all three

T2 maps. T2 values for media, fibrous tissue and adipose fat measured on “full k-space”,

keyhole and RIGR T2 maps were summarized in Table 11.

The T2 values additionally exhibit the problem of RIGR reconstruction in multicontrast

MRI. Pair two-tailed student t-test with 95% confidence level was performed to statistically

compare the T2 values. For “full k-space” and keyhole comparison, the p values are 0.90,

0.34 and 0.16 for adipose fat, media and fibrous tissue, respectively. For “full k-space” and

RIGR comparison, all the p values are smaller than 10−18. It demonstrates that the T2

values calculated using “full k-space” reconstructed MR data are similar to those on keyhole

reconstructed data, but statistically very different from those calculated on RIGR data.
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Table 11: T2 Values Calculated Using “Full K-space”, Keyhole and RIGR Reconstructed
MR Data

Adipose Fat (ms) Media (ms) Fibrous Tissue (ms)
“Full K-space” 89.6±7.3 52.8±5.5 44.7±6.1
Keyhole 89.7±7.1 53.1±6.3 43.9±6.6
RIGR 84.9±7.6 49.4±5.7 45.5±7.6

Moreover, as shown in Table 11, the T2 values calculated using RIGR data are poorly

separated (media and fibrous cap) due to the smoothing effect of RIGR reconstruction.

This observation, along with the visual inspections described previously, indicates potential

inferior PIEC characterization on RIGR data to keyhole data.

6.4.4.3 Characterization Comparison

To study the effect of “shared k-space” on plaque characterization more systematically,

the PIEC methodology was applied to “full k-space”, keyhole and RIGR reconstructed

multicontrast MR data separately. Five typical slices (one slice per vessel) were chosen for

this comparison.

Because the MR data were acquired with phased-arrayed surface coil, there exists sig-

nificant amount of inhomogeneity on the multicontrast MR images. The inhomogeneity

is explicitly suppressed in the MAGIC-FCM classification step of PIEC. As an example,

Figure 40 illustrates MAGIC inhomogeneity correction of the MR images.

When applying PIEC to “full k-space”, keyhole and RIGR reconstructed data, corre-

sponding T2 distributions were used in the labeling process as shown in Table 11 that

plaque tissues’ T2 distributions are different for the three reconstruction schemes.

Generally, PIEC results on keyhole and RIGR data both correlate well with the PIEC

results on “full k-space” reconstructed MRI. A typical example is shown in Figure 41.

In this figure, it is apparent that the PIEC result on keyhole reconstructed data is very

similar to the “reference” (PIEC result on “full k-space” reconstructed multicontrast MRI).

Pixel-wise characterization accuracies (PIEC result on “full k-space” reconstructed data

was chosen as gold standard), defined in Equation (63), were 96.2% and 87.9% for keyhole
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Figure 40: MAGIC-FCM was used in PIEC to perform the segmentation because of
the inhomogeneity residing in the MR images. It is shown in this example that MAGIC
procedure helps remove the inhomogeneity (arrows) prior to classification.

and RIGR reconstructed data, respectively. This demonstrates the feasibility of “shared k-

space” reconstruction in MRI plaque characterization. The better characterization accuracy

of PIEC on keyhole data additionally verifies the claim that keyhole reconstruction is more

appropriate in accelerating the multicontrast MRI acquisition.

6.4.5 Discussions and Conclusion

In the current chapter, “shared k-space” techniques were interrogated for the possibility of

MRI acquisition acceleration. Different from pulse sequence based fast acquisition schemes,

these techniques reduce the acquisition time by minimizing the redundant data used in

reconstruction. This approach enables “shared k-space” techniques to accelerate the acqui-

sition without sacrificing image resolution and SNR.

The MRI scans were conducted on a 1.5T clinical scanner with phased-arrayed carotid

coils. Clinical TSE based sequences were used to acquire the multicontrast MR data. Re-

sults from this study show that PIEC on both keyhole and RIGR reconstructed data yields
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Figure 41: PIEC characterization of “full k-space” (upper row), keyhole (middle row)
and RIGR (lower row) reconstructed multicontrast MR images. It appears that PIEC
characterization is more accurate (see locations marked by arrow) on keyhole reconstructed
data than RIGR reconstructed data.

very accurate characterization results. RIGR reconstruction appears superior to keyhole in

suppressing the Gibbs ringing artifact caused by k-space inconsistency. Quantitative com-

parisons of T2 maps, however, suggest keyhole data are superior to RIGR data in terms

of measuring tissues’ T2 distributions. Specifically, it was observed that the T2 values of

plaque components calculated from RIGR data are poorly separated and deviate signifi-

cantly from the expectations. On the other hand, T2 values calculated from keyhole data

are not statistically different from the true values. Finally, our results show that PIEC

characterization is more accurate on keyhole data than RIGR data. One of the major im-

plications of these results is that keyhole is more suitable than RIGR in “shared k-space”

multicontrast MRI reconstruction.
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Despite multicontrast MRI acquisition is apparently time consuming, there are not a

lot of investigations done to mitigate the situation. This is partly due to the fact that

multicontrast MRI plaque characterization is still mainly an ex-vivo research tool. Another

more possible cause is the technical difficulties associated with reducing the acquisition

time while keeping reasonably good SNR and resolution for plaque characterization. Most

previous studies [30] use very long echo train length (ETL) TSE to expedite acquisition.

Recently, Koktzoglou et al. [47] investigated the substitution of steady-state free proces-

sion (SSFP) for TSE in MR plaque imaging aiming at improve the acquisition efficiency.

Compared to these techniques, “shared k-space” reconstruction evaluated in the current

study treats fast multicontrast MRI acquisition from a totally different perspective. The

sharing of information across contrast mechanisms makes it possible to combine “shared

k-space” approach with other techniques to achieve even more expedited multicontrast MRI

acquisition.

Fast acquisition will facilitate the clinical utility of multicontrast MRI, it may benefit

the clinical acquisition of DWI as well. Because of the high sensitivity of DWI to bulk

water motion, including DWI in multicontrast MRI has foreseeable difficulties in clinical

application. This is especially true given the high resolution required for plaque imaging.

The reduced k-space coverage in “shared k-space” reconstruction could minimize the effect

of physiological motions and make DWI possible under clinical settings.

One of the major limitations of this experiment is the limited number of vessels studied.

Therefore, more thorough assessment is needed for further verification. To approximate

the clinical conditions as much as possible, the MRI scanning was performed on a patient

scanner using clinical pulse sequences. However, since there were no physiological motions

associated with the vessels during our data acquisition, “shared k-space” reconstruction

techniques may encounter additional difficulties (e.g. misregistration between images of

different contrast mechanisms) in patient scans. The current study chose proton density

weighted image as the reference image because of its high SNR. Despite the seemingly

validity of this choice, it would be interesting to evaluate the performance of “shared k-

space” reconstruction using other contrast mechanisms as references. Furthermore, “shared
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k-space” reconstruction on diffusion weighted images is also an imperative future work.

In conclusion, “shared k-space” reconstruction is a viable solution in reducing the mul-

ticontrast MRI acquisition without sacrificing the image SNR and resolution. Moreover,

keyhole reconstruction is more suitable than RIGR in multicontrast MRI because it pro-

vides: 1) more accurate quantitative T2 maps, and 2) better tissue characterization and

labeling for tissue components.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 The Problem Revisited

Before summarizing the key findings, it is appropriate to revisit the purpose of the current

thesis. Overall, this thesis intends to study the feasibility of multicontrast MRI in atheroscle-

rotic plaque characterization. The technical limitations, including resolution, SNR as well

as motion, make in-vivo plaque characterization, at least in coronary arteries, inapplica-

ble. Therefore, multicontrast MR plaque characterization heavily relies on ex-vivo studies.

This fact renders plaque characterization routines developed for ex-vivo scans questionable

for in-vivo application. For this reason, the effect of vessel preservation on multicontrast

MRI appearance need to be assessed first. After that, automatic plaque characterization

algorithm can be developed based on simulated in-vivo studies. Finally, fast acquisition

schemes are sought to accelerate multicontrast MRI acquisition, which will bring this tech-

nique closer to clinical applications.

7.2 Summary of Major Findings

The experiments and theoretical developments are covered from Chapter IV to VI. In Chap-

ter IV, the detailed experiment setup and MRI protocol were described. The comparisons

between simulated in-vivo scans (fresh) and ex-vivo scans (preserved) yielded the following

findings:

• The multicontrast MR images of both fresh and preserved vessels correlate well with

histology.

• For most plaque tissues except thrombus, the MR signal is virtually unchanged visu-

ally. In Chapter V, it is additionally verified that automatic plaque characterization

algorithm based on comparative contrast suggests no significant differences between

characterization results on fresh and preserved vessels.
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• For all typical plaque constituents, quantitative MR properties including T2 and ADC

values show small, yet significant, change after the preservation.

The most important inference from the comparisons is that multicontrast MR plaque char-

acterization algorithms developed under ex-vivo conditions still apply for in-vivo studies.

In Chapter V, an automatic plaque characterization routine, PIEC, combining MAGIC-

FCM/SPFCM and Bayesian labeling was developed and evaluated. The evaluation of PIEC

on simulated and multicontrast MR coronary images shows that it is a promising technique

to replace manual characterization.

Chapter VI investigates the feasibility of “shared k-space” reconstruction in accelerating

the multicontrast MRI acquisition. The major findings here include:

• “Shared k-space” reconstruction could be a viable solution in reducing the multicon-

trast MRI acquisition without sacrificing the SNR and resolution.

• Keyhole reconstruction is more suitable than RIGR in multicontrast MRI because it

provides: 1) more accurate quantitative T2 maps, and 2) better tissue characterization

and labeling for tissue components.

7.3 Future Work

There are several areas of future work that may extend the current research. First of all,

efforts should be spent on investigating new contrast mechanisms to better differentiate

plaque components. This includes the developments of both new pulse sequences and new

MR contrast agents. At the same time, in order to reduce the data redundancy, it is

equally important to find the most efficient combination of MR contrast mechanisms for

proper plaque characterization. By addressing the two aspects at the same time, a more

effective and efficient multicontrast MRI protocol can be developed.

Second, it is critical to perform more thorough evaluation on both “shared k-space”

reconstruction and PIEC characterization employing a bigger dataset. The current research

is based on limited data and thus needs more careful inspection before being used clinically.

Third, the theoretical framework of PIEC and “shared k-space” reconstruction can be
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advanced. As already indicated, PIEC can include more MR properties and other morpho-

logical information to improve the labeling accuracy. Moreover, “shared k-space” techniques

can be combined with half Fourier technique to additionally reduce the acquisition time.

7.4 Final Thoughts

Recently, several groups have begun evaluating MR plaque characterization clinically on

carotid arteries. Readers interested in a thorough review of these clinical trials is referred to

a manuscript published by Yuan et al. [108]. It is likely that this practice will become more

widespread with the maturity of both acquisition and analysis techniques. Furthermore,

it is anticipated that these results will further research into clinical practices on coronary

plaques. The combination of multicontrast MRI and automatic plaque characterization

techniques makes this particular area of research fruitful.
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